当前位置: 首页 > news >正文

初识chatgpt

GPT到底是什么

首先,我们需要了解GPT的全称:Generative Pre-trained Transformer,即三个关键词:生成式 预训练 变换模型。

(1)什么是生成式?

即能够生成新的文本序列。

(2)什么是预训练?

即能够在模型数据集基础上进行无监督学习,当学习到一些通用的特征或知识,就能够讲这些知识迁移到其他任务上。

这种无监督学习,是没有标签/目标,也没有反馈,它自己会寻找数据中隐藏的结构。下图展示了三种学习模式的差别,而ChatGPT采用的实无监督学习 和 强化学习。
在这里插入图片描述

(3)什么是变换模型?

这是一种神经网络结构,通过对输入序列的层层处理,得到最终的输出。

简单地说,它就是一个黑盒子,例如我们在做文本的翻译任务时,当我们输入一个中文,经过这个黑盒子,输出翻译后的英文。当然,这个黑盒子内部有一系列的复杂操作,通过一些 encoder 和 decoder 生成最终的输出,如下图所示。
在这里插入图片描述

GPT的本质是猜概率

现阶段的GPT都是在“玩文字游戏”,它只是在进行一次又一次的概率解题,和我们玩填字游戏是一个逻辑,只不过,我们人类是靠知识和智慧,而AI主要靠概率计算。经过大量的数据训练后,AI预测到下图所示的空格中可能会出现的最高概率的词,进而将其进行输出。

在这里插入图片描述

在基于大语言模型(LLM)基础上,逐渐演进出了两个最主流的方向:BERT 和 GPT。在GPT3.0发布前,GPT一直弱于BERT,而3.0发布之后GPT貌似一骑绝尘了。GPT方向上,最知名的玩家非OpenAI莫属,从我们开始熟悉的GPT3.5到GPT4.0。

生成式AI全景图

生成式AI应用全景图如下图所示,可以看到,它可以做很多个类别的事情,从文本到编码再到图片,以及今年Sora大模型掀起的视频生成浪潮,基于每个类别提供的动力,我们可以在其上层开发构件潜在的应用程序。
在这里插入图片描述

目前生成式AI应用最广泛的当属 文本 和 编码 了,也可以看到,文本 只是 生成式AI生态中的 一环,而不是全部,而这一环就是我们现在学习的 ChatGPT。

ChatGPT的进化过程

下面这张图完整展示了ChatGPT的进化过程,经过了多年的技术积累,最终形成了针对人类反馈信息学习的大规模预训练语言模型。
在这里插入图片描述

ChatGPT可以做什么

ChatGPT很能干,它可以干50+件事情!

在这里插入图片描述

其中,问答、翻译、写文案、提炼文字、生成代码、代码解释 等是最常见的应用场景。

ChatGPT不可以做什么
首先,我们需要知道:ChatGPT本身不是联网的,它的大模型本身就存在时效性,在解决你的问题之前,它所学到的知识将始终落后当前一段时间,因为大模型的重新训练成本很大,因此不是每天更新的,所以不会联网。

因此,我们便可以知道,ChatGPT还不会很快地取代Google和百度帮你查到最新的技术文档,也没法代替小爱同学帮你查询天气,无法替代高德地图帮你推荐附近的美食 等等。

相关文章:

初识chatgpt

GPT到底是什么 首先,我们需要了解GPT的全称:Generative Pre-trained Transformer,即三个关键词:生成式 预训练 变换模型。 (1)什么是生成式? 即能够生成新的文本序列。 (2&#…...

【60天备战2024年11月软考高级系统架构设计师——第33天:云计算与大数据架构——大数据处理框架的应用场景】

随着大数据技术的发展,越来越多的企业开始采用大数据处理框架来解决实际问题。理解这些框架的应用场景对于架构师来说至关重要。 大数据处理框架的应用场景 实时数据分析:使用Apache Kafka与Apache Spark结合,可以实现对实时数据流的处理与…...

如何设计具体项目的数据库管理

### 例三:足协的数据库管理算法 #### 角色: - **ESFP学生**:小明 - **ENTP老师**:张老师 #### 主题:足协的数据库管理算法 --- **张老师**:小明,今天我们来讨论一下足协的数据库管理算法。你…...

对于 Vue CLI 项目如何引入Echarts以及动态获取数据

🚀个人主页:一颗小谷粒 🚀所属专栏:Web前端开发 很荣幸您能阅读我的文章,诚请评论指点,欢迎欢迎 ~ 目录 1、数据画卷—Echarts介绍 1.1 什么是Echarts? 1.2 Echarts官网地址 2、Vue CLI 项目…...

【Linux笔记】在VMware中,为基于NAT模式运行的CentOS虚拟机设置固定的网络IP地址

一、配置VMware虚拟网络 1、打开VMware虚拟网络编辑器: 点击VMware主界面上方的“编辑”菜单,选择“虚拟网络编辑器”。 2、选择NAT模式网络: 在虚拟网络编辑器中,选择VMnet8(或其他NAT模式的网络)。 取消勾…...

一文上手Kafka【中】

一、发送消息细节 在发送消息的特别注意: 在版本 3.0 中,以前返回 ListenableFuture 的方法已更改为返回 CompletableFuture。为了便于迁移,2.9 版本添加了一个方法 usingCompletableFuture(),该方法为 CompletableFu…...

Ubuntu如何如何安装tcpdump

在Ubuntu上安装tcpdump非常简单,可以通过以下步骤完成: 打开终端。 更新包列表: 首先,更新你的包管理器的包列表: sudo apt update 安装tcpdump: 使用以下命令安装tcpdump: sudo apt install …...

3-3 AUTOSAR RTE 对SR Port的作用

返回总目录->返回总目录<- 一、前言 RTE作为SWC和BSW之间的通信机构,支持Sender-Receiver方式实现ECU内及ECU间的通信。 对于Sender-Receiver Port支持三种模式: 显式访问:若运行实体采用显示模式的S/R通信方式,数据读写是即时的;隐式访问:当多个运行实体需要读取…...

hive/impala/mysql几种数据库的sql常用写法和函数说明

做大数据开发的时候&#xff0c;会在几种库中来回跳&#xff0c;同一个需求&#xff0c;不同库函数和写法会有出入&#xff0c;在此做汇总沉淀。 1. hive 1. 日期差 DATEDIFF(CURRENT_DATE(),wdjv.creation_date) < 30 30天内的数据 2.impala 3. spark 4. mysql 1.时间差…...

论文阅读:LM-Cocktail: Resilient Tuning of Language Models via Model Merging

论文链接 代码链接 Abstract 预训练的语言模型不断进行微调,以更好地支持下游应用。然而,此操作可能会导致目标领域之外的通用任务的性能显著下降。为了克服这个问题,我们提出了LM Cocktail,它使微调后的模型在总体上保持弹性。我们的方法以模型合并(Model Merging)的形…...

8640 希尔(shell)排序

### 思路 希尔排序是一种基于插入排序的排序算法&#xff0c;通过将待排序数组分割成多个子序列分别进行插入排序来提高效率。初始增量d为n/2&#xff0c;之后每次减半&#xff0c;直到d为1。 ### 伪代码 1. 读取输入的待排序关键字个数n。 2. 读取n个待排序关键字并存储在数组…...

Linux 安装redis主从模式+哨兵模式3台节点

下载 https://download.redis.io/releases/ 解压 tar -zxvf redis-7.2.4.tar.gz -C /opt chmod 777 -R /opt/redis-7.2.4/安装 # 编译 make # 安装&#xff0c; 一定是大写PREFIX make PREFIX/opt/redis-7.2.4/redis/ install配置为系统服务 cd /etc/systemd/system/主服务…...

[BCSP-X2024.小高3] 学习计划

题目描述 暑假共有 n 天&#xff0c;第 i 天的精力指数为 a[i]&#xff0c;你想要利用假期依次&#xff08;按 1,2,...,m 顺序&#xff09;复习 m 门功课&#xff0c;第 i 门功课的重要程度为 b[i]&#xff0c;且每门的复习时段必须连 续&#xff0c;并且不能有某天不干事。 …...

Android Debug Bridge(ADB)完全指南

文章目录 前言一、什么是ADB&#xff1f;二、ADB的工作原理ADB由三个部分组成&#xff1a; 三、如何安装ADBWindows系统&#xff1a;macOS和Linux系统&#xff1a; 四、ADB常用指令大全设备相关操作1. 查看连接的设备&#xff1a;2. 重启设备&#xff1a;3. 进入Bootloader模式…...

再次重逢,愿遍地繁花

再次重逢&#xff0c;愿遍地繁花 我并不是一个对最终幻想7很热衷的粉丝&#xff0c;也并没有像那些评论区的大佬&#xff0c;能够轻易地说出整部世界的全貌。说到底&#xff0c;我只是一个看完了《最终幻想7&#xff1a;重制版》和《最终幻想7&#xff1a;重生》的爱好者罢了。…...

数据结构和算法基础(一)

文章目录 链表反转链表合并删除链表倒数第 n 个结点找链表的中间结点链表中环的检测排序算法递归 趁空闲时间刷一遍极客时间上王争的《数据结构与算法之美》课程&#xff0c;个人觉得写的很好&#xff0c;每章节由浅入深且从基础到引入设计类问题&#xff0c;如果写过很多代码想…...

【超长好文】网络安全从业者面试指南

文章为笔者偶然看到的github项目《网络安全面试指南》&#xff0c;作者FeeiCN&#xff0c;读完内容深感作者的用心&#xff0c;尽管一些观点因为时间原因与当下行情存在差异&#xff0c;但仍旧值得大家参考&#xff0c;希望能给大家在这行业寒冬带来一些启发&#xff0c;愿正在…...

基于大数据的高校新生数据可视化分析系统

作者&#xff1a;计算机学姐 开发技术&#xff1a;SpringBoot、SSM、Vue、MySQL、JSP、ElementUI、Python、小程序等&#xff0c;“文末源码”。 专栏推荐&#xff1a;前后端分离项目源码、SpringBoot项目源码、Vue项目源码、SSM项目源码、微信小程序源码 精品专栏&#xff1a;…...

【cache】浅析四种常用的缓存淘汰算法 FIFO/LRU/LFU/W-TinyLFU

本文浅析淘汰策略与工作中结合使用、选取&#xff0c;并非针对算法本身如何实现的 文章目录 FIFOLFULRUW-TinyLFU实践与优化监控与调整 FIFO first input first output &#xff0c; 先进先出&#xff0c;即最早存入的元素最先取出&#xff0c; 典型数据结构代表&#xff1a;…...

STM32的DMA技术介绍

DMA&#xff08;Direct Memory Access&#xff0c;直接内存访问&#xff09; 是一种允许外设直接与系统内存进行数据传输&#xff0c;而无需经过CPU的技术。在STM32微控制器中&#xff0c;DMA技术极大地提高了数据传输效率&#xff0c;降低了CPU的负担&#xff0c;从而提升系统…...

装饰模式(Decorator Pattern)重构java邮件发奖系统实战

前言 现在我们有个如下的需求&#xff0c;设计一个邮件发奖的小系统&#xff0c; 需求 1.数据验证 → 2. 敏感信息加密 → 3. 日志记录 → 4. 实际发送邮件 装饰器模式&#xff08;Decorator Pattern&#xff09;允许向一个现有的对象添加新的功能&#xff0c;同时又不改变其…...

Linux 文件类型,目录与路径,文件与目录管理

文件类型 后面的字符表示文件类型标志 普通文件&#xff1a;-&#xff08;纯文本文件&#xff0c;二进制文件&#xff0c;数据格式文件&#xff09; 如文本文件、图片、程序文件等。 目录文件&#xff1a;d&#xff08;directory&#xff09; 用来存放其他文件或子目录。 设备…...

AI,如何重构理解、匹配与决策?

AI 时代&#xff0c;我们如何理解消费&#xff1f; 作者&#xff5c;王彬 封面&#xff5c;Unplash 人们通过信息理解世界。 曾几何时&#xff0c;PC 与移动互联网重塑了人们的购物路径&#xff1a;信息变得唾手可得&#xff0c;商品决策变得高度依赖内容。 但 AI 时代的来…...

用机器学习破解新能源领域的“弃风”难题

音乐发烧友深有体会&#xff0c;玩音乐的本质就是玩电网。火电声音偏暖&#xff0c;水电偏冷&#xff0c;风电偏空旷。至于太阳能发的电&#xff0c;则略显朦胧和单薄。 不知你是否有感觉&#xff0c;近两年家里的音响声音越来越冷&#xff0c;听起来越来越单薄&#xff1f; —…...

让回归模型不再被异常值“带跑偏“,MSE和Cauchy损失函数在噪声数据环境下的实战对比

在机器学习的回归分析中&#xff0c;损失函数的选择对模型性能具有决定性影响。均方误差&#xff08;MSE&#xff09;作为经典的损失函数&#xff0c;在处理干净数据时表现优异&#xff0c;但在面对包含异常值的噪声数据时&#xff0c;其对大误差的二次惩罚机制往往导致模型参数…...

在Mathematica中实现Newton-Raphson迭代的收敛时间算法(一般三次多项式)

考察一般的三次多项式&#xff0c;以r为参数&#xff1a; p[z_, r_] : z^3 (r - 1) z - r; roots[r_] : z /. Solve[p[z, r] 0, z]&#xff1b; 此多项式的根为&#xff1a; 尽管看起来这个多项式是特殊的&#xff0c;其实一般的三次多项式都是可以通过线性变换化为这个形式…...

莫兰迪高级灰总结计划简约商务通用PPT模版

莫兰迪高级灰总结计划简约商务通用PPT模版&#xff0c;莫兰迪调色板清新简约工作汇报PPT模版&#xff0c;莫兰迪时尚风极简设计PPT模版&#xff0c;大学生毕业论文答辩PPT模版&#xff0c;莫兰迪配色总结计划简约商务通用PPT模版&#xff0c;莫兰迪商务汇报PPT模版&#xff0c;…...

逻辑回归暴力训练预测金融欺诈

简述 「使用逻辑回归暴力预测金融欺诈&#xff0c;并不断增加特征维度持续测试」的做法&#xff0c;体现了一种逐步建模与迭代验证的实验思路&#xff0c;在金融欺诈检测中非常有价值&#xff0c;本文作为一篇回顾性记录了早年间公司给某行做反欺诈预测用到的技术和思路。百度…...

windows系统MySQL安装文档

概览&#xff1a;本文讨论了MySQL的安装、使用过程中涉及的解压、配置、初始化、注册服务、启动、修改密码、登录、退出以及卸载等相关内容&#xff0c;为学习者提供全面的操作指导。关键要点包括&#xff1a; 解压 &#xff1a;下载完成后解压压缩包&#xff0c;得到MySQL 8.…...

永磁同步电机无速度算法--基于卡尔曼滤波器的滑模观测器

一、原理介绍 传统滑模观测器采用如下结构&#xff1a; 传统SMO中LPF会带来相位延迟和幅值衰减&#xff0c;并且需要额外的相位补偿。 采用扩展卡尔曼滤波器代替常用低通滤波器(LPF)&#xff0c;可以去除高次谐波&#xff0c;并且不用相位补偿就可以获得一个误差较小的转子位…...