当前位置: 首页 > news >正文

P3227 [HNOI2013] 切糕

题意:
n ∗ m n*m nm的矩阵,每个点可以选择一个值 a i , j = k a_{i,j}=k ai,j=k,然后你能获得 w ( i , j , k ) w(i,j,k) w(i,j,k)的得分,但是相邻两点之间的差值有限制,让你求最大得分。

考虑最小割。

每个点 ( i , j ) (i,j) (i,j)弄出一条长为 R + 1 R+1 R+1的链,其中 k − > k + 1 k -> k+1 k>k+1的流量为 w ( i , j , k ) w(i,j,k) w(i,j,k)

考虑限制,只需要从这条链的 k k k到相邻一条链的 k − d k-d kd连一无穷大的边,因为如果相邻的链选择的点 < k − d <k-d <kd那么就会有流量剩余,因此就能进行限制了。

#include<bits/stdc++.h>
#define rep(i,x,y) for(int i=x;i<=y;i++)
#define dwn(i,x,y) for(int i=x;i>=y;i--)
#define ll long long
using namespace std;
template<typename T>inline void qr(T &x){x=0;int f=0;char s=getchar();while(!isdigit(s))f|=s=='-',s=getchar();while(isdigit(s))x=x*10+s-48,s=getchar();x=f?-x:x;
}
int cc=0,buf[31];
template<typename T>inline void qw(T x){if(x<0)putchar('-'),x=-x;do{buf[++cc]=int(x%10);x/=10;}while(x);while(cc)putchar(buf[cc--]+'0');
}
const int N=5e5+10;
int n,m,k,d;
int h[N],st,ed,cur[N];
int tot=1,hd[N],ver[N*5],nxt[N*5],w[N*5];
int a[50][50][50],id[50][50][50],cnt;
void add(int x,int y,int z){tot++;ver[tot]=y;w[tot]=z;nxt[tot]=hd[x];hd[x]=tot;
}
void link(int x,int y,int z){add(x,y,z),add(y,x,0);
}
bool bt_h(){memset(h,0,sizeof(h));h[st]=1;queue<int>q;q.push(st);while(q.size()){int x=q.front();q.pop();for(int i=hd[x];i;i=nxt[i]){int y=ver[i];if(w[i]&&!h[y]){h[y]=h[x]+1;q.push(y);}}}return h[ed];
}
int findflow(int x,int f){if(x==ed)return f;int res=f,tt;for(int &i=cur[x];i;i=nxt[i]){int y=ver[i];if(w[i]&&h[y]==h[x]+1){tt=findflow(y,min(res,w[i]));w[i]-=tt,w[i^1]+=tt;res-=tt;if(!res)break;}}if(res==f)h[x]=0;return f-res;
}
int dicnic(){int ans=0;while(bt_h()){memcpy(cur,hd,sizeof(cur));ans+=findflow(st,1e9);}return ans;
}
const int dx[4]={-1,1,0,0};
const int dy[4]={0,0,-1,1};
void solve(){qr(n),qr(m),qr(k),qr(d);rep(ki,1,k){rep(i,1,n)rep(j,1,m)qr(a[ki][i][j]);}rep(ki,1,k+1){rep(i,1,n)rep(j,1,m)id[ki][i][j]=++cnt;}st=cnt+1,ed=st+1;rep(i,1,n)rep(j,1,m){link(st,id[1][i][j],1e7);link(id[k+1][i][j],ed,1e7);}rep(ki,1,k){rep(i,1,n)rep(j,1,m){link(id[ki][i][j],id[ki+1][i][j],a[ki][i][j]);}if(ki>d){rep(i,1,n)rep(j,1,m){rep(t,0,3){int x=i+dx[t],y=j+dy[t];if(1<=x&&x<=n&&1<=y&&y<=m){link(id[ki][i][j],id[ki-d][x][y],1e7);}}}}}qw(dicnic());puts("");
}
int main(){int tt;tt=1;while(tt--)solve();return 0;
}

相关文章:

P3227 [HNOI2013] 切糕

题意: n ∗ m n*m n∗m的矩阵,每个点可以选择一个值 a i , j k a_{i,j}k ai,j​k,然后你能获得 w ( i , j , k ) w(i,j,k) w(i,j,k)的得分&#xff0c;但是相邻两点之间的差值有限制&#xff0c;让你求最大得分。 考虑最小割。 每个点 ( i , j ) (i,j) (i,j)弄出一条长为 R…...

超分服务的分量保存

分量说明 分量的概念主要是对于显卡解码&#xff0c;编码和网络传输而言&#xff0c;显卡可以同时进行几个线程&#xff0c;多个显卡可以分布式计算&#xff0c;对分量进行AI识别&#xff0c;比如我们有cuda的显卡&#xff0c;cuda的核心量可以分给不同的分片视频&#xff0c;第…...

Windows11系统下SkyWalking环境搭建教程

目录 前言SkyWalking简介SkyWalking下载Agent监控实现启动配置SkyWalking启动Java应用程序启动Elasticsearch安装总结 前言 本文为博主在项目环境搭建时记录的SkyWalking安装流程&#xff0c;希望对大家能够有所帮助&#xff0c;不足之处欢迎批评指正&#x1f91d;&#x1f91…...

前端BOM常用操作

BOM操作常用命令详解及代码案例 BOM&#xff08;Browser Object Model&#xff09;是浏览器对象模型&#xff0c;是浏览器提供的JavaScript操作浏览器的API。BOM提供了与网页无关的浏览器的功能对象&#xff0c;虽然没有正式的标准&#xff0c;但现代浏览器已经几乎实现了Java…...

【Go】-viper库的使用

目录 viper简介 viper使用 通过viper.Set设置值 读取配置文件说明 读取配置文件 读取多个配置文件 读取配置项的值 读取命令行的值 io.Reader中读取值 写配置文件 WriteConfig() 和 SafeWriteConfig() 区别: viper简介 配置管理解析库&#xff0c;是由大神 Steve Fr…...

JavaWeb酒店管理系统(详细版)

✅作者简介&#xff1a;2022年博客新星 第八。热爱国学的Java后端开发者&#xff0c;修心和技术同步精进。 &#x1f34e;个人主页&#xff1a;Java Fans的博客 &#x1f34a;个人信条&#xff1a;不迁怒&#xff0c;不贰过。小知识&#xff0c;大智慧。 &#x1f49e;当前专栏…...

C++ | 定长内存池 | 对象池

文章目录 C | 定长内存池 | 对象池一、内存池的引入二、代码中的内存池实现 - ObjectPool类&#xff08;一&#xff09;整体结构&#xff08;二&#xff09;内存分配 - New函数&#xff08;三&#xff09;内存回收 - Delete函数 三、内存池在TreeNode示例中的性能测试演示四、脱…...

python画图|自制渐变柱状图

在前述学习过程中&#xff0c;我们已经通过官网学习了如何绘制渐变的柱状图及其背景。 掌握一门技能的最佳检验方式就是通过实战&#xff0c;因此&#xff0c;本文尝试做一些渐变设计。 前述学习记录可查看链接&#xff1a; Python画图|渐变背景-CSDN博客 【1】柱状图渐变 …...

基于RPA+BERT的文档辅助“悦读”系统 | OPENAIGC开发者大赛高校组AI创作力奖

在第二届拯救者杯OPENAIGC开发者大赛中&#xff0c;涌现出一批技术突出、创意卓越的作品。为了让这些优秀项目被更多人看到&#xff0c;我们特意开设了优秀作品报道专栏&#xff0c;旨在展示其独特之处和开发者的精彩故事。 无论您是技术专家还是爱好者&#xff0c;希望能带给…...

K8S部署流程

一、war打包镜像(survey,analytics,trac系统) 代码打包成war准备tomcat的server.xml文件&#xff0c;修改connector中8080端口为项目的端口 修改前&#xff1a; <Connector port"8080" protocol"HTTP/1.1"connectionTimeout"20000"redirect…...

DevExpress WinForms中文教程:Data Grid - 如何添加或删除行?

本教程介绍DevExpress WinForm的Data Grid控件UI元素和API&#xff0c;它们使您和最终用户能够添加或删除数据行。您将首选学习如何启用内置的数据导航器&#xff0c;然后学习如何使用Microsoft Outlook启发的New Item行添加新记录。最后教程将向您展示基本的API&#xff0c;它…...

u盘格式化后数据能恢复吗?2024年Top4恢复神器来帮忙

在这个电脑和手机满天飞的时代&#xff0c;U盘是我们用来存东西和传文件的得力助手&#xff0c;特别重要。但是&#xff0c;有时候U盘可能会不小心被格式化了&#xff0c;里面的重要文件就不见了。那么&#xff0c;U盘格式化后的数据还能恢复吗&#xff1f;当然可以。今天会告诉…...

深度学习·Argparse

Argparse 命令行选项、参数和子命令解析器 ArgumentParser 命令行传参数->解析参数->获得对应参数 初始化&#xff1a;parser argparse.ArgumentParser(descriptionxxx)添加命令行参数&#xff1a; parser.add_argument("--training_filepath", typestr, he…...

制造企业为何需要PLM系统?PLM系统解决方案对制造业重要性分析

制造企业为何需要PLM系统&#xff1f;PLM系统解决方案对制造业重要性分析 新华社9月23日消息&#xff0c;据全国组织机构统一社会信用代码数据服务中心统计&#xff0c;我国制造业企业总量突破600万家。数据显示&#xff0c;2024年1至8月&#xff0c;我国制造业企业数量呈现稳…...

http协议中的header详细讲解

http协议中的header详细讲解 HTTP 协议和 TCP/IP 协议族内的其他众多的协议相同&#xff0c;用于客户端和服务器之间的通信。 请求访问文本或图像等资源的一端称为客户端&#xff0c;而提供资源响应的一端称为服务器端。 HTTP 协议规定&#xff0c;请求从客户端发出&#xf…...

探索后量子安全:基于格加密技术的未来密码学展望

在信息技术日新月异的今天&#xff0c;量子计算作为下一代计算技术的代表&#xff0c;正逐步从理论走向实践。量子计算的出现对现有的加密体系构成了严重威胁&#xff0c;尤其是基于大数分解和离散对数难题的传统密码学&#xff08;如RSA和Diffie-Hellman协议&#xff09;。为了…...

WPF之UI进阶--完整了解wpf的控件和布局容器及应用

前面三篇有关WPF的基础介绍&#xff0c;分别介绍了wpf与winform的异同&#xff0c;wpf的事件生成和使用以及数据绑定。但我们还缺乏一副好的“皮囊”&#xff0c;所以从这篇开始我们来开始学习wpf的UI相关的内容&#xff0c;首当其冲的就是布局容器。 其实我们知道&#xff0c;…...

unity一键注释日志和反注释日志

开发背景&#xff1a;游戏中日志也是很大的开销&#xff0c;虽然有些日志不打印但是毕竟有字符串的开销&#xff0c;甚至有字符串拼接的开销&#xff0c;有些还有装箱和拆箱的开销&#xff0c;比如Debug.Log(1) 这种 因此需要注释掉&#xff0c;当然还需要提供反注释的功能&am…...

VBA数据库解决方案第十五讲:Recordset集合中单个数据的精确处理

《VBA数据库解决方案》教程&#xff08;版权10090845&#xff09;是我推出的第二套教程&#xff0c;目前已经是第二版修订了。这套教程定位于中级&#xff0c;是学完字典后的另一个专题讲解。数据库是数据处理的利器&#xff0c;教程中详细介绍了利用ADO连接ACCDB和EXCEL的方法…...

甄选范文“论软件需求管理”,软考高级论文,系统架构设计师论文

论文真题 软件需求管理是一个对系统需求变更了解和控制的过程。需求管理过程与需求开发过程相互关联,初始需求导出的同时就要形成需求管理规划,一旦启动了软件开发过程,需求管理活动就紧密相伴。 需求管理过程中主要包含变更控制、版本控制、需求跟踪和需求状态跟踪等4项活…...

铭豹扩展坞 USB转网口 突然无法识别解决方法

当 USB 转网口扩展坞在一台笔记本上无法识别,但在其他电脑上正常工作时,问题通常出在笔记本自身或其与扩展坞的兼容性上。以下是系统化的定位思路和排查步骤,帮助你快速找到故障原因: 背景: 一个M-pard(铭豹)扩展坞的网卡突然无法识别了,扩展出来的三个USB接口正常。…...

Linux链表操作全解析

Linux C语言链表深度解析与实战技巧 一、链表基础概念与内核链表优势1.1 为什么使用链表&#xff1f;1.2 Linux 内核链表与用户态链表的区别 二、内核链表结构与宏解析常用宏/函数 三、内核链表的优点四、用户态链表示例五、双向循环链表在内核中的实现优势5.1 插入效率5.2 安全…...

AI Agent与Agentic AI:原理、应用、挑战与未来展望

文章目录 一、引言二、AI Agent与Agentic AI的兴起2.1 技术契机与生态成熟2.2 Agent的定义与特征2.3 Agent的发展历程 三、AI Agent的核心技术栈解密3.1 感知模块代码示例&#xff1a;使用Python和OpenCV进行图像识别 3.2 认知与决策模块代码示例&#xff1a;使用OpenAI GPT-3进…...

Docker 运行 Kafka 带 SASL 认证教程

Docker 运行 Kafka 带 SASL 认证教程 Docker 运行 Kafka 带 SASL 认证教程一、说明二、环境准备三、编写 Docker Compose 和 jaas文件docker-compose.yml代码说明&#xff1a;server_jaas.conf 四、启动服务五、验证服务六、连接kafka服务七、总结 Docker 运行 Kafka 带 SASL 认…...

《用户共鸣指数(E)驱动品牌大模型种草:如何抢占大模型搜索结果情感高地》

在注意力分散、内容高度同质化的时代&#xff0c;情感连接已成为品牌破圈的关键通道。我们在服务大量品牌客户的过程中发现&#xff0c;消费者对内容的“有感”程度&#xff0c;正日益成为影响品牌传播效率与转化率的核心变量。在生成式AI驱动的内容生成与推荐环境中&#xff0…...

在Ubuntu中设置开机自动运行(sudo)指令的指南

在Ubuntu系统中&#xff0c;有时需要在系统启动时自动执行某些命令&#xff0c;特别是需要 sudo权限的指令。为了实现这一功能&#xff0c;可以使用多种方法&#xff0c;包括编写Systemd服务、配置 rc.local文件或使用 cron任务计划。本文将详细介绍这些方法&#xff0c;并提供…...

unix/linux,sudo,其发展历程详细时间线、由来、历史背景

sudo 的诞生和演化,本身就是一部 Unix/Linux 系统管理哲学变迁的微缩史。来,让我们拨开时间的迷雾,一同探寻 sudo 那波澜壮阔(也颇为实用主义)的发展历程。 历史背景:su的时代与困境 ( 20 世纪 70 年代 - 80 年代初) 在 sudo 出现之前,Unix 系统管理员和需要特权操作的…...

vue3+vite项目中使用.env文件环境变量方法

vue3vite项目中使用.env文件环境变量方法 .env文件作用命名规则常用的配置项示例使用方法注意事项在vite.config.js文件中读取环境变量方法 .env文件作用 .env 文件用于定义环境变量&#xff0c;这些变量可以在项目中通过 import.meta.env 进行访问。Vite 会自动加载这些环境变…...

今日学习:Spring线程池|并发修改异常|链路丢失|登录续期|VIP过期策略|数值类缓存

文章目录 优雅版线程池ThreadPoolTaskExecutor和ThreadPoolTaskExecutor的装饰器并发修改异常并发修改异常简介实现机制设计原因及意义 使用线程池造成的链路丢失问题线程池导致的链路丢失问题发生原因 常见解决方法更好的解决方法设计精妙之处 登录续期登录续期常见实现方式特…...

Python基于历史模拟方法实现投资组合风险管理的VaR与ES模型项目实战

说明&#xff1a;这是一个机器学习实战项目&#xff08;附带数据代码文档&#xff09;&#xff0c;如需数据代码文档可以直接到文章最后关注获取。 1.项目背景 在金融市场日益复杂和波动加剧的背景下&#xff0c;风险管理成为金融机构和个人投资者关注的核心议题之一。VaR&…...