LeetCode: 1971. 寻找图中是否存在路径
寻找图中是否存在路径
原题
有一个具有 n 个顶点的 双向 图,其中每个顶点标记从 0 到 n - 1(包含 0 和 n - 1)。图中的边用一个二维整数数组 edges 表示,其中 edges[i] = [ui, vi] 表示顶点 ui 和顶点 vi 之间的双向边。 每个顶点对由 最多一条 边连接,并且没有顶点存在与自身相连的边。
请你确定是否存在从顶点 source 开始,到顶点 destination 结束的 有效路径。
给你数组 edges 和整数 n、source 和 destination,如果从 source 到 destination 存在 有效路径 ,则返回 true,否则返回 false 。
示例 1:(图片转存自LeetCode)

输入:n = 3, edges = [[0,1],[1,2],[2,0]], source = 0, destination = 2
输出:true
解释:存在由顶点 0 到顶点 2 的路径:
- 0 → 1 → 2
- 0 → 2
示例 2:

输入:n = 6, edges = [[0,1],[0,2],[3,5],[5,4],[4,3]], source = 0, destination = 5
输出:false
解释:不存在由顶点 0 到顶点 5 的路径.
提示:
1 <= n <= 2 * 1050 <= edges.length <= 2 * 105edges[i].length == 20 <= ui, vi <= n - 1ui != vi0 <= source, destination <= n - 1- 不存在重复边
- 不存在指向顶点自身的边
class Solution {public boolean validPath(int n, int[][] edges, int source, int destination) {}
}
解题思路
- 将图的边列表(二维整数数组
edges)转化为图的邻接表形式,以便快速访问每个节点的相邻节点信息。由于节点编号从0到n-1连续,故采用数组而非 HashMap 进行存储。 - 使用[[深度优先搜索]]递归地进行图的遍历。在遍历过程中,需要避免重复访问已经访问过的节点,因此使用一个
visited数组来记录哪些节点已经被访问过。 - 终止条件:
- 如果在遍历过程中找到了
destination,则可以立即返回true,表示路径存在。 - 如果遍历了所有可能的路径都没有找到
destination,则返回false,表示路径不存在。
- 如果在遍历过程中找到了
代码示例
class Solution {public boolean validPath(int n, int[][] edges, int source, int destination) {// 如果起点和终点是同一个点,直接返回 trueif (source == destination) return true;// 构建邻接表,用数组表示图List<Integer>[] graph = new ArrayList[n];for (int i = 0; i < n; i ++) {graph[i] = new ArrayList<>();}// 填充邻接表for (int[] edge : edges) {int fromNode = edge[0];int toNode = edge[1];graph[fromNode].add(toNode);graph[toNode].add(fromNode);}// 创建访问标记数组boolean[] visited = new boolean[n];// 使用 DFS 检查是否存在从 source 到 destination 的路径return dfs(graph, visited, source, destination);}private boolean dfs(List<Integer>[] graph, boolean[] visited, int node, int destination) {// 如果当前节点是目标节点,返回 trueif (node == destination) return true;// 标记当前节点为已访问visited[node] = true;// 遍历所有相邻节点for (int neighbor : graph[node]) {// 如果相邻节点没有访问过,进行递归 DFSif (!visited[neighbor]) {if (dfs(graph, visited, neighbor, destination)) {// 找到能到达终点的路径就返回 truereturn true;}}}// 所有路径都不能到达终点,返回 falsereturn false;}
}
优化思路
这是一个经典的并查集问题。通过并查集的数据结构,可以高效地判断两个节点是否连通。每次将两个节点的根节点连接在一起,最终只需检查 source 和 destination 是否有相同的根节点即可。
优化后代码
class Solution {private int[] parent;private int[] rank; // 树的高度数组public boolean validPath(int n, int[][] edges, int source, int destination) {parent = new int[n];rank = new int[n];// 初始化并查集:每个节点的父节点为自己,rank 初始化为 1for (int i = 0; i < n; i++) {parent[i] = i;rank[i] = 1;}// 遍历所有边,将两个节点连接(即在并查集中合并)for (int[] edge : edges) {union(edge[0], edge[1]);}// 检查起始节点和目标节点是否在同一集合中return find(source) == find(destination);}// 查找某个节点的根节点,同时进行路径压缩private int find(int x) {if (parent[x] != x) { // 如果当前节点不是它自己的父节点,则继续向上查找parent[x] = find(parent[x]);}return parent[x];}// 合并两个集合,使用 rank 优化合并private void union(int x, int y) {int rootX = find(x);int rootY = find(y);if (rootX != rootY) {// 比较两个集合的 rank,rank 小的合并到大的上if (rank[rootX] > rank[rootY]) {parent[rootY] = rootX; // 将 y 的根节点挂到 x 的根节点上} else if (rank[rootX] < rank[rootY]) {parent[rootX] = rootY; // 将 x 的根节点挂到 y 的根节点上} else {parent[rootY] = rootX; // 如果 rank 相同,随意合并,但要增加新根的 rankrank[rootX]++;}}}
}相关文章:
LeetCode: 1971. 寻找图中是否存在路径
寻找图中是否存在路径 原题 有一个具有 n 个顶点的 双向 图,其中每个顶点标记从 0 到 n - 1(包含 0 和 n - 1)。图中的边用一个二维整数数组 edges 表示,其中 edges[i] [ui, vi] 表示顶点 ui 和顶点 vi 之间的双向边。 每个顶点…...
mysql 查询表所有数据,分页的语句
在 MySQL 中,若要从表中查询所有数据并实现分页,你可以使用 SELECT 语句结合 LIMIT 和 OFFSET 子句。LIMIT 用于指定返回的记录数,而 OFFSET 则用于指定从哪一条记录开始返回(即跳过的记录数)。 以下是一个基本的分页…...
TI DSP TMS320F280025 Note13:CPUtimer定时器原理分析与使用
TMS320F280025 CPUtimer定时器原理分析与使用 ` 文章目录 TMS320F280025 CPUtimer定时器原理分析与使用框图分析定时器中断定时器使用CPUtimers.cCPUtimers.h框图分析 定时器框图如图所示 定时器有一个预分频模块和一个定时/计数模块, 其中预分频模块包括一个 16 位的定时器分…...
Australis 相機率定軟體說明
概要 課堂中使用Australis這套軟體,順帶記錄操作過程 內容以老師口述及我測試的經過 照片為老師課堂提供之 說明 執行 Step1. 匯入照片 注意!!如果是Mac的作業系統,將資料夾移到Windows上的時候,建議創一個新的資料…...
C++入门(有C语言基础)
string类 string类初始化的方式大概有以下几种: string str1;string str2 "hello str2";string str3("hello str3");string str4(5, B);string str5[3] {"Xiaomi", "BYD", "XPeng"};string str6 str5[2];str…...
第四届高性能计算与通信工程国际学术会议(HPCCE 2024)
目录 大会简介 主办单位,承办单位 征稿主题 会议议程 参会方式 大会官网:www.hpcce.net 大会简介 第四届高性能计算与通信工程国际学术会议(HPCCE 2024)将于2024年11月22-24日在苏州召开。HPCCE 2024将围绕“高性能计算与通信工…...
负载均衡架构解说
负载均衡架构是一种设计模式,用于在多个服务器之间分配网络或应用流量,以提高资源利用率、最大化吞吐量、减少响应时间,并确保高可用性。 负载均衡架构的关键组件和概念: 关键组件 1.负载均衡器(Load Balancer&…...
【异常数据检测】孤立森林算法异常数据检测算法(数据可视化 Matlab语言)
摘要 本文研究了基于孤立森林算法的异常数据检测方法,并在MATLAB中实现了该算法的可视化。孤立森林是一种无监督的异常检测算法,主要通过构建决策树来区分正常数据和异常数据。本文使用真实数据集,通过二维可视化展示了检测结果。实验结果表…...
MKV转MP4丨FFmpeg的简单命令使用——视频格式转换
MKV是一种视频封装格式,很好用,也是OBS的默认推荐录制格式,因为不会突然断电关机而导致整个视频录制文件丢失。 但是MKV无法直接导入PR中剪辑,最直接的方法是将MKV转换为MP4格式,最方便且安全无损的转换方法便是用FFmp…...
git使用“保姆级”教程4——版本回退及分支讲解
一、版本回退 1、历史回退(版本回退)——命令行git reset --hard 版本编号 注意:当前命令会让工作区的内容发生改变,可以理解成历史区(master分支)直接回到工作区比如:从版本4回到版本3,则工作区只会显示版本3的代码内容 1.1、指…...
spring cache,Spring data redis
本项目使用Redis存储缓存数据,如何通过Java去访问Redis? 常用的有Jedis和Lettuce两个访问redis的客户端类库 ,Jedis和Lettuce都是redis提供的。其中Lettuce的性能和并发性要好一些,Spring Boot 默认使用的是 Lettuce 作为 Redis …...
10.数据结构与算法-线性表的应用(线性表与有序表的合并)
线性表的合并 有序表的合并 顺序表 链表...
GAN|对抗| 生成器更新|判别器更新过程
如上图所示,生成对抗网络存在上述内容: 真实数据集;生成器;生成器损失函数;判别器;判别器损失函数;生成器、判别器更新(生成器和判别器就是小偷和警察的关系,他们共用的…...
day01——登录功能
逻辑: 前端将登录信息通过报文的形式,发送给后端。后端进行登陆验证 2.1 根据接受的用户名,查询数据表。 若不存在该用户的记录,返回用户不存在。 若用户存在,判断数据库中的密码和接收的是否一致,不一致则…...
Flutter中使用FFI的方式链接C/C++的so库(harmonyos)
Flutter中使用FFI的方式链接C/C库(harmonyos) FFI plugin创建和so的配置FFI插件对so库的使用 FFI plugin创建和so的配置 首先我们可以根据下面的链接生成FFI plugin插件:开发FFI plugin插件 然后在主项目中pubspec.yaml 添加插件的依赖路径&…...
【C++】二义性
在C中,二义性(ambiguity)通常指的是编译器无法确定使用哪个函数、变量或类成员的情况。这种不确定性通常是由于继承和多态特性导致的。下面是一些常见的产生二义性的场景以及如何解决它们的方法: 1. 多重继承中的二义性 当一个类…...
高并发内存池(五):ThreadCache、CentralCache和PageCache的内存回收机制、阶段性代码展示和释放内存过程的调试
目录 ThreadCache的内存回收机制 补充内容1 补充内容2 补充内容3 补充内容4 ListTooLong函数的实现 CentralCache的内存回收机制 MapObjectToSpan函数的实现 ReleaseListToSpans函数的实现 PageCache的内存回收机制 补充内容1 补充内容2 ReleaseSpanToPageCache函…...
STL之stackqueue篇(上)探索C++ STL中的Queue与Stack——构建数据处理的基础框架
文章目录 前言一、stack1.1 定义与基本概念1.2 底层容器1.3 成员函数1.4 使用示例1.5 注意事项1.6 应用场景 二、queue2.1 定义与基本概念2.2 底层容器2.3 成员函数2.4 使用示例2.5 注意事项2.6 应用场景 前言 本文旨在深入探讨C STL中的queue与stack容器,从它们的…...
代码随想录算法训练营Day13
110.平衡二叉树 力扣题目链接:. - 力扣(LeetCode) 后序迭代 class Solution {public boolean isBalanced(TreeNode root) {return getHeight(root)!-1;}public int getHeight(TreeNode root){if(rootnull){return 0;}int leftheightgetHei…...
基于STM32的智能门禁系统
目录 引言项目背景环境准备 硬件准备软件安装与配置系统设计 系统架构关键技术代码示例 RFID数据采集与处理门禁控制实现显示与报警功能应用场景结论 1. 引言 智能门禁系统在现代安防中占据重要地位,通常用于控制进入和离开特定区域的权限。通过基于STM32微控制器…...
多模态2025:技术路线“神仙打架”,视频生成冲上云霄
文|魏琳华 编|王一粟 一场大会,聚集了中国多模态大模型的“半壁江山”。 智源大会2025为期两天的论坛中,汇集了学界、创业公司和大厂等三方的热门选手,关于多模态的集中讨论达到了前所未有的热度。其中,…...
Vue2 第一节_Vue2上手_插值表达式{{}}_访问数据和修改数据_Vue开发者工具
文章目录 1.Vue2上手-如何创建一个Vue实例,进行初始化渲染2. 插值表达式{{}}3. 访问数据和修改数据4. vue响应式5. Vue开发者工具--方便调试 1.Vue2上手-如何创建一个Vue实例,进行初始化渲染 准备容器引包创建Vue实例 new Vue()指定配置项 ->渲染数据 准备一个容器,例如: …...
什么?连接服务器也能可视化显示界面?:基于X11 Forwarding + CentOS + MobaXterm实战指南
文章目录 什么是X11?环境准备实战步骤1️⃣ 服务器端配置(CentOS)2️⃣ 客户端配置(MobaXterm)3️⃣ 验证X11 Forwarding4️⃣ 运行自定义GUI程序(Python示例)5️⃣ 成功效果 应用程序开发人员和管理员的小型命令行工具。它可以用于对 SIP 应用程序和设备进行一些简单的测试。 sipsak 是一款 SIP 压力和诊断实用程序。它通过 sip-uri 向服务器发送 SIP 请求,并检查收到的响应。它以以下模式之一…...
智能AI电话机器人系统的识别能力现状与发展水平
一、引言 随着人工智能技术的飞速发展,AI电话机器人系统已经从简单的自动应答工具演变为具备复杂交互能力的智能助手。这类系统结合了语音识别、自然语言处理、情感计算和机器学习等多项前沿技术,在客户服务、营销推广、信息查询等领域发挥着越来越重要…...
免费PDF转图片工具
免费PDF转图片工具 一款简单易用的PDF转图片工具,可以将PDF文件快速转换为高质量PNG图片。无需安装复杂的软件,也不需要在线上传文件,保护您的隐私。 工具截图 主要特点 🚀 快速转换:本地转换,无需等待上…...
GitHub 趋势日报 (2025年06月06日)
📊 由 TrendForge 系统生成 | 🌐 https://trendforge.devlive.org/ 🌐 本日报中的项目描述已自动翻译为中文 📈 今日获星趋势图 今日获星趋势图 590 cognee 551 onlook 399 project-based-learning 348 build-your-own-x 320 ne…...
GO协程(Goroutine)问题总结
在使用Go语言来编写代码时,遇到的一些问题总结一下 [参考文档]:https://www.topgoer.com/%E5%B9%B6%E5%8F%91%E7%BC%96%E7%A8%8B/goroutine.html 1. main()函数默认的Goroutine 场景再现: 今天在看到这个教程的时候,在自己的电…...
【HarmonyOS 5】鸿蒙中Stage模型与FA模型详解
一、前言 在HarmonyOS 5的应用开发模型中,featureAbility是旧版FA模型(Feature Ability)的用法,Stage模型已采用全新的应用架构,推荐使用组件化的上下文获取方式,而非依赖featureAbility。 FA大概是API7之…...
WebRTC调研
WebRTC是什么,为什么,如何使用 WebRTC有什么优势 WebRTC Architecture Amazon KVS WebRTC 其它厂商WebRTC 海康门禁WebRTC 海康门禁其他界面整理 威视通WebRTC 局域网 Google浏览器 Microsoft Edge 公网 RTSP RTMP NVR ONVIF SIP SRT WebRTC协…...
