当前位置: 首页 > news >正文

✨机器学习笔记(六)—— ReLU、多分类问题、Softmax、Adam、反向传播

Course2-Week2:
https://github.com/kaieye/2022-Machine-Learning-Specialization/tree/main/Advanced%20Learning%20Algorithms/week2

机器学习笔记(六)

  • 1️⃣ReLU(Rectified Linear Unit)
  • 2️⃣多分类问题
  • 3️⃣Softmax
  • 4️⃣Adam
  • 5️⃣ 反向传播(Back propagation)

1️⃣ReLU(Rectified Linear Unit)

✨ReLU function: a = g ( z ) = m a x ( 0 , z ) a =g(z)= max(0, z) a=g(z)=max(0,z)

ReLU 激活函数与线性和 Sigmoid 激活函数对比,三个都是常用的激活函数:

在这里插入图片描述

🎈在此示例中的派生的 “awareness” 特征是具有连续的值范围,Sigmoid 最适合 0/1 的二分类情况。而 ReLU 函数提供连续的线性关系,并且有一个 "off" 范围,可以关闭 z < 0 z < 0 z<0 的范围,让其输出 0,"off" 功能使 ReLU 成为非线性的激活函数。

在这里插入图片描述

🎈在输出层中,如果是二分类问题选择 Sigmoid 函数作为激活函数是个不错的选择;而对于线性输出(既有负值也有正值)可以选择线性函数作为激活函数;如果对于回归问题但是输出只有正值(如房屋价格),则选择 ReLU 函数作为激活函数就相当合适了。
🤓在输出层中激活函数的选取可以去考虑预测的 y ^ \hat y y^ 是个什么样的值来进行选取。

在这里插入图片描述

🎈在隐藏层中,其实除了二分类问题使用 Sigmoid 激活函数,基本上都使用 ReLU 激活函数。ReLU 相较于 Sigmoid 计算速度更快,因为只需要计算 m a x ( 0 , z ) max(0, z) max(0,z),而 Sigmoid 需要取幂、取负,相除等等,计算效率自然就低了;对于梯度下降,Sigmoid 在多个地方逐渐变平坦,就导致了 J ( w , b ) J(w,b) J(w,b) 的函数也有多个平坦的地方,难以到全局最小值,并且偏导数很小会使梯度下降的速度缓慢,而 ReLU 梯度下降会更快更好

在这里插入图片描述


✨选取激活函数方式的概括

在这里插入图片描述


🧐为什么神经网络需要激活函数?

🎈如果在神经网络中不使用激活函数:
在这里插入图片描述
🤓就会出现了将前一个线性回归得出的输出,作为下一个线性回归的输入去计算,最终其实就是线性函数的线性组合,则还是一个线性函数,这样的话就没有必要去写这么个多层的神经网络了,本质就是一个一层的输入输出映射,根本就不需要神经网络。

2️⃣多分类问题

多分类问题:目标值 y y y 的值多于 2 个的情况。
在这里插入图片描述
使用 P ( y = i ∣ x ⃗ ) P(y=i \mid \vec x) P(y=ix ) 表示在输入 x ⃗ \vec x x 上分类为第 i i i 种情况的概率。

3️⃣Softmax

Softmax 是 Sigmoid 的一般形式,用于处理多分类问题,由于我们已经学过了逻辑回归函数 Sigmoid,将两者对比来学习 Softmax 函数。

在这里插入图片描述

🤓由此可以看出 Sigmoid 是对于分类问题只有两个值 P ( y = 0 ∣ x ⃗ ) P(y=0 \mid \vec x) P(y=0x ) P ( y = 1 ∣ x ⃗ ) P(y=1 \mid \vec x) P(y=1x ) 时的特殊 Softmax 函数,也可以说 Softmax 回归模型是逻辑回归的泛化。

🎈再对比一下两者的损失函数:

在这里插入图片描述


🎗️神经网络的 Softmax 输出

🧐在具有 Softmax 输出的 softmax 回归和神经网络中,都会生成 N 个输出,并选择 1 个输出作为预测类别。在这两种情况下,向量 z z z 都是由应用于 softmax 函数的线性函数生成的。softmax 函数转换为概率分布,应用 softmax 后,每个输出将介于 0 和 1 之间,并且输出将加到 1,以便可以将其解释为概率。

在这里插入图片描述

4️⃣Adam

Adam: Adaptive Moment estimation

🤓 Adam 算法是梯度下降的优化算法,相较于原始的梯度下降算法,Adam 算法可以自适应学习率,让梯度下降的过程更快并且更加精准。当学习率过小时,梯度下降的过程缓慢,Adam 会增大学习率去加快速度;当学习率过大时,梯度下降并不精准,Adam 会减小学习率去更好的执行梯度下降。

在这里插入图片描述

✨代码实现:

在这里插入图片描述

5️⃣ 反向传播(Back propagation)

🎈顺序计算各个中间参数的过程为前向传播,而反向通过前面求出的参数的值或偏导值再求出偏导则是后向传播。

在这里插入图片描述

🤓反向传播可以很好的提高计算效率,对于 N N N 个这样的节点和 P P P 个参数的情况,通过计算图的反向传播可以只花费 N + P N + P N+P 步求出。如果普通的计算通过求出 N N N 个节点值再求每个 P P P 则要花费 N × P N × P N×P 步。可见后向传播的计算效率显著提高。

在这里插入图片描述

相关文章:

✨机器学习笔记(六)—— ReLU、多分类问题、Softmax、Adam、反向传播

Course2-Week2: https://github.com/kaieye/2022-Machine-Learning-Specialization/tree/main/Advanced%20Learning%20Algorithms/week2机器学习笔记&#xff08;六&#xff09; 1️⃣ReLU&#xff08;Rectified Linear Unit&#xff09;2️⃣多分类问题3️⃣Softmax4️⃣Adam5…...

Xshell7下载及服务器连接

一、Xshell-7.0.0164p、Xftp 7下载 1.1、文件下载 通过网盘分享的文件&#xff1a;xshell 链接: https://pan.baidu.com/s/1qc0CPv4Hkl19hI9tyvYZkQ 提取码: 5snq –来自百度网盘超级会员v2的分享 1.2、ip连接 下shell和xftp操作一样&#xff1a;找到文件—》新建—》名称随…...

SQL Server—的数据类型

SQL Server—的数据类型 在 SQL Server 数据库中&#xff0c;数据类型是定义数据模型的基础&#xff0c;它们决定了数据在数据库中的存储方式和格式。正确选择数据类型不仅可以优化存储空间&#xff0c;还能提高查询性能和数据完整性。 1文本类型 文本类型&#xff1a;字符数…...

WaterCloud:一套基于.NET 8.0 + LayUI的快速开发框架,完全开源免费!

前言 今天大姚给大家分享一套基于.NET 8.0 LayUI的快速开发框架&#xff0c;项目完全开源、免费&#xff08;MIT License&#xff09;且开箱即用&#xff1a;WaterCloud。 可完全实现二次开发让开发更多关注业务逻辑。既能快速提高开发效率&#xff0c;帮助公司节省人力成本&…...

数据结构-LRU缓存(C语言实现)

遇到困难&#xff0c;不必慌张&#xff0c;正是成长的时候&#xff0c;耐心一点&#xff01; 目录 前言一、题目介绍二、实现过程2.1 实现原理2.2 实现思路2.2.1 双向链表2.2.2 散列表 2.3 代码实现2.3.1 结构定义2.3.2 双向链表操作实现2.3.3 实现散列表的操作2.3.4 内存释放代…...

javacv FFmpegFrameGrabber 阻塞重连解决方法汇总

JavaCV中FrameGrabber类可以连接直播流地址, 进行解码, 获取Frame帧信息, 常用方式如下 FrameGrabber grabber new FrameGrabber("rtsp:/192.168.0.0"); while(true) {Frame frame grabber.grabImage();// ... } 在如上代码中, 若连接地址网络不通, 或者连接超时…...

自然语言处理问答系统技术

自然语言处理问答系统技术 随着人工智能的不断发展&#xff0c;自然语言处理&#xff08;NLP&#xff09;技术已成为推动智能问答系统发展的核心技术。问答系统是利用NLP来解析用户提出的问题&#xff0c;并从知识库中找到最相关的答案。在许多应用中&#xff0c;如智能客服、…...

交换机和路由器的区别

交换机和路由器的区别主要体现在以下几个方面&#xff1a; 工作层次不同&#xff1a;交换机通常工作在OSI模型的数据链路层&#xff08;第二层&#xff09;&#xff0c;主要根据MAC地址进行数据包转发。而路由器则工作在OSI模型的网络层&#xff08;第三层&#xff09;&#xf…...

JavaScript Array(数组)

JavaScript Array(数组) JavaScript 中的数组是一种特殊的对象,用于存储一系列有序的值。数组是 JavaScript 中非常强大的数据结构,广泛用于各种编程任务。本文将详细介绍 JavaScript 数组的特性、用法和操作方法。 数组的创建 在 JavaScript 中,创建数组有多种方式: …...

示例说明:elasticsearch实战应用

Elasticsearch 是一个基于 Lucene 的分布式搜索和分析引擎&#xff0c;广泛应用于日志分析、全文搜索、数据可视化等领域。以下是 Elasticsearch 实战应用的一些关键点和步骤&#xff1a; 1. 环境搭建 首先&#xff0c;你需要在你的环境中安装和配置 Elasticsearch。 安装 E…...

暴力匹配算法和 KMP 算法的优缺点分别是什么?

暴力匹配算法和 KMP 算法的优缺点分别是什么? 在字符串匹配领域,暴力匹配算法和 KMP(Knuth-Morris-Pratt)算法是两种常见的方法。它们各有特点,适用于不同的场景。让我们深入探讨这两种算法的优缺点。 一、暴力匹配算法 (一)优点 简单易实现:暴力匹配算法的逻辑非常…...

web笔记

<form method"POST" action"{{ url_for(register) }}"><label for"username">用户名:</label><input type"text" id"username" name"username" required><br><label for"p…...

【网络安全】-访问控制-burp(1~6)

文章目录 前言   1.Lab: Unprotected admin functionality  2.Lab: Unprotected admin functionality with unpredictable URL   3.Lab: User role controlled by request parameter   4.Lab:User role can be modified in user profile  5.Lab: User ID controlled by…...

iOS 项目中的多主题颜色设计与实现

引言 在现代iOS应用中&#xff0c;用户对个性化体验的需求越来越高&#xff0c;除了功能上的满足&#xff0c;多样的视觉风格也是提升用户体验的重要手段之一。提供多主题颜色的切换功能不仅能满足用户的审美偏好&#xff0c;还可以让应用更具活力&#xff0c;适应不同场景下的…...

Android Camera2 与 Camera API技术探究和RAW数据采集

Android Camera2 Android Camera2 是 Android 系统中用于相机操作的一套高级应用程序接口&#xff08;API&#xff09;&#xff0c;它取代了之前的 Camera API。以下是关于 Android Camera2 的一些主要信息&#xff1a; 主要特点&#xff1a; 强大的控制能力&#xff1a;提供…...

[python][pipenv]pipenv的使用

pipenv 是一个 Python 开发工作流程的工具&#xff0c;它旨在将 pip 的包管理和 virtualenv 的虚拟环境管理结合起来。以下是一些基本的 pipenv 使用方法&#xff1a; 安装 pipenv&#xff1a; 如果你还没有安装 pipenv&#xff0c;可以通过 pip 安装它&#xff1a; pip insta…...

SpringSession微服务

一.在linux中确保启动起来redis和nacos 依赖记得别放<dependencyManagement></dependencyManagement>这个标签去了 1.首先查看已经启动的服务 docker ps 查看有没有安装redis和nacos 2.启动redis和nacos 发现没有启动redis和nacos,我们先来启动它。&#xff0c;…...

强化学习:通过试错学习最优策略---示例:使用Q-Learning解决迷宫问题

强化学习&#xff08;Reinforcement Learning, RL&#xff09;是一种让智能体&#xff08;agent&#xff09;在与环境交互的过程中&#xff0c;通过最大化某种累积奖励来学习如何采取行动的学习方法。它适用于那些需要连续决策的问题&#xff0c;比如游戏、自动驾驶和机器人控制…...

OpenGL ES 纹理(7)

OpenGL ES 纹理(7) 简述 通过前面几章的学习&#xff0c;我们已经可以绘制渲染我们想要的逻辑图形了&#xff0c;但是如果我们想要渲染一张本地图片&#xff0c;这就需要纹理了。 纹理其实是一个可以用于采样的数据集&#xff0c;比较典型的就是图片了&#xff0c;我们知道我…...

【C#】CacheManager:高效的 .NET 缓存管理库

在现代应用开发中&#xff0c;缓存是提升性能和降低数据库负载的重要技术手段。无论是 Web 应用、桌面应用还是移动应用&#xff0c;缓存都能够帮助减少重复的数据查询和处理&#xff0c;从而提高系统的响应速度。然而&#xff0c;管理缓存并不简单&#xff0c;尤其是当你需要处…...

7.4.分块查找

一.分块查找的算法思想&#xff1a; 1.实例&#xff1a; 以上述图片的顺序表为例&#xff0c; 该顺序表的数据元素从整体来看是乱序的&#xff0c;但如果把这些数据元素分成一块一块的小区间&#xff0c; 第一个区间[0,1]索引上的数据元素都是小于等于10的&#xff0c; 第二…...

SkyWalking 10.2.0 SWCK 配置过程

SkyWalking 10.2.0 & SWCK 配置过程 skywalking oap-server & ui 使用Docker安装在K8S集群以外&#xff0c;K8S集群中的微服务使用initContainer按命名空间将skywalking-java-agent注入到业务容器中。 SWCK有整套的解决方案&#xff0c;全安装在K8S群集中。 具体可参…...

视频字幕质量评估的大规模细粒度基准

大家读完觉得有帮助记得关注和点赞&#xff01;&#xff01;&#xff01; 摘要 视频字幕在文本到视频生成任务中起着至关重要的作用&#xff0c;因为它们的质量直接影响所生成视频的语义连贯性和视觉保真度。尽管大型视觉-语言模型&#xff08;VLMs&#xff09;在字幕生成方面…...

unix/linux,sudo,其发展历程详细时间线、由来、历史背景

sudo 的诞生和演化,本身就是一部 Unix/Linux 系统管理哲学变迁的微缩史。来,让我们拨开时间的迷雾,一同探寻 sudo 那波澜壮阔(也颇为实用主义)的发展历程。 历史背景:su的时代与困境 ( 20 世纪 70 年代 - 80 年代初) 在 sudo 出现之前,Unix 系统管理员和需要特权操作的…...

Spring AI 入门:Java 开发者的生成式 AI 实践之路

一、Spring AI 简介 在人工智能技术快速迭代的今天&#xff0c;Spring AI 作为 Spring 生态系统的新生力量&#xff0c;正在成为 Java 开发者拥抱生成式 AI 的最佳选择。该框架通过模块化设计实现了与主流 AI 服务&#xff08;如 OpenAI、Anthropic&#xff09;的无缝对接&…...

MySQL 8.0 OCP 英文题库解析(十三)

Oracle 为庆祝 MySQL 30 周年&#xff0c;截止到 2025.07.31 之前。所有人均可以免费考取原价245美元的MySQL OCP 认证。 从今天开始&#xff0c;将英文题库免费公布出来&#xff0c;并进行解析&#xff0c;帮助大家在一个月之内轻松通过OCP认证。 本期公布试题111~120 试题1…...

实现弹窗随键盘上移居中

实现弹窗随键盘上移的核心思路 在Android中&#xff0c;可以通过监听键盘的显示和隐藏事件&#xff0c;动态调整弹窗的位置。关键点在于获取键盘高度&#xff0c;并计算剩余屏幕空间以重新定位弹窗。 // 在Activity或Fragment中设置键盘监听 val rootView findViewById<V…...

Linux --进程控制

本文从以下五个方面来初步认识进程控制&#xff1a; 目录 进程创建 进程终止 进程等待 进程替换 模拟实现一个微型shell 进程创建 在Linux系统中我们可以在一个进程使用系统调用fork()来创建子进程&#xff0c;创建出来的进程就是子进程&#xff0c;原来的进程为父进程。…...

Java毕业设计:WML信息查询与后端信息发布系统开发

JAVAWML信息查询与后端信息发布系统实现 一、系统概述 本系统基于Java和WML(无线标记语言)技术开发&#xff0c;实现了移动设备上的信息查询与后端信息发布功能。系统采用B/S架构&#xff0c;服务器端使用Java Servlet处理请求&#xff0c;数据库采用MySQL存储信息&#xff0…...

从 GreenPlum 到镜舟数据库:杭银消费金融湖仓一体转型实践

作者&#xff1a;吴岐诗&#xff0c;杭银消费金融大数据应用开发工程师 本文整理自杭银消费金融大数据应用开发工程师在StarRocks Summit Asia 2024的分享 引言&#xff1a;融合数据湖与数仓的创新之路 在数字金融时代&#xff0c;数据已成为金融机构的核心竞争力。杭银消费金…...