python-ds:Python 中的数据结构库(适用于面试的数据结构和算法合集)
在软件开发中,数据结构是组织和存储数据的方式,对算法的效率和程序的性能至关重要。Python 提供了许多内置的数据结构,但在一些复杂的应用场景中,原生数据结构可能无法满足特定需求。这时,一个功能强大、易于使用的数据结构库显得尤为重要。
python-ds 是一个开源的 Python 数据结构库,旨在提供多种高级数据结构的实现,如链表、树、图等。这些数据结构可用于解决各种计算问题,增强 Python 在数据处理和算法开发方面的能力。
本文将介绍 python-ds 的主要特点、使用示例以及应用场景,并通过表格数据展示不同数据结构的特点。
⭕️宇宙起点
- 💯 python-ds 的特点
- 💯 安装 python-ds
- 💯 python-ds 的基本用法
- 1. 链表(LinkedList)
- 2. 栈(Stack)
- 3. 队列(Queue)
- 4. 二叉树(Binary Tree)
- 5. 图(Graph)
- 💯 表格数据示例
- 💯 应用场景
- 📥 下载地址
- 💬 结语
- 📒 参考文献
💯 python-ds 的特点
- 多样的数据结构:提供链表、栈、队列、树、图等多种数据结构的实现,满足不同应用场景的需求。
- 简单易用:使用 Pythonic 的方式进行设计,易于学习和使用,适合初学者和专业开发者。
- 功能丰富:每种数据结构都实现了常用的方法,方便进行数据操作和访问。
- 开源社区:作为一个开源项目,python-ds 欢迎开发者参与贡献,持续完善库的功能。
💯 安装 python-ds
可以通过 pip
安装 python-ds:
pip install python-ds
安装完成后,您就可以在 Python 项目中导入并使用该库。
💯 python-ds 的基本用法
1. 链表(LinkedList)
链表是一种线性数据结构,由节点组成,每个节点包含数据和指向下一个节点的指针。
from python_ds.linked_list import LinkedList# 创建链表并添加元素
linked_list = LinkedList()
linked_list.append(1)
linked_list.append(2)
linked_list.append(3)# 遍历链表
for item in linked_list:print(item)
2. 栈(Stack)
栈是一种后进先出(LIFO)的数据结构,支持基本的 push 和 pop 操作。
from python_ds.stack import Stack# 创建栈并执行操作
stack = Stack()
stack.push(1)
stack.push(2)
stack.push(3)print(stack.pop()) # 输出: 3
print(stack.pop()) # 输出: 2
3. 队列(Queue)
队列是一种先进先出(FIFO)的数据结构,支持 enqueue 和 dequeue 操作。
from python_ds.queue import Queue# 创建队列并执行操作
queue = Queue()
queue.enqueue(1)
queue.enqueue(2)
queue.enqueue(3)print(queue.dequeue()) # 输出: 1
print(queue.dequeue()) # 输出: 2
4. 二叉树(Binary Tree)
二叉树是一种特殊的树结构,每个节点最多有两个子节点。
from python_ds.binary_tree import BinaryTree# 创建二叉树并添加节点
tree = BinaryTree()
tree.insert(10)
tree.insert(5)
tree.insert(15)# 先序遍历
print(tree.preorder()) # 输出: [10, 5, 15]
5. 图(Graph)
图是一种复杂的数据结构,由节点和边组成,适合表示关系和连接。
from python_ds.graph import Graph# 创建图并添加边
graph = Graph()
graph.add_edge("A", "B")
graph.add_edge("A", "C")
graph.add_edge("B", "D")# 打印邻接表
print(graph.adjacency_list)
💯 表格数据示例
以下是一个表格,展示了不同数据结构的基本操作及其时间复杂度:
数据结构 | 主要操作 | 时间复杂度 |
---|---|---|
链表 | 插入、删除、查找 | O(1)(头部插入)/ O(n)(查找) |
栈 | push, pop | O(1) |
队列 | enqueue, dequeue | O(1) |
二叉树 | 插入、查找、删除 | O(log n)(平衡树)/ O(n)(不平衡树) |
图 | 添加边、遍历 | O(1)(邻接表)/ O(V + E)(遍历) |
💯 应用场景
-
算法学习与实践:对于学习数据结构和算法的学生,python-ds 提供了丰富的实例,可以帮助他们深入理解各种数据结构的实现与应用。
-
数据处理与分析:在数据分析和处理过程中,常常需要使用各种数据结构来存储和管理数据,python-ds 的多样化结构能够满足这些需求。
-
游戏开发:在游戏开发中,常常需要使用图、树等数据结构来表示场景、角色和交互关系,python-ds 提供了简单易用的实现。
-
Web 开发:在 Web 开发中,许多功能需要高效的数据管理,使用合适的数据结构可以提高应用的性能。
📥 下载地址
python-ds 最新版 下载地址
💬 结语
python-ds 是一个强大且灵活的数据结构库,为 Python 开发者提供了多种常用数据结构的实现。通过简单的 API,开发者可以轻松地在项目中使用这些数据结构,从而提高代码的可读性和性能。
无论是在学习数据结构与算法,还是在实际项目开发中,python-ds 都是一个非常值得推荐的工具。
📒 参考文献
- python-ds GitHub仓库
相关文章:

python-ds:Python 中的数据结构库(适用于面试的数据结构和算法合集)
在软件开发中,数据结构是组织和存储数据的方式,对算法的效率和程序的性能至关重要。Python 提供了许多内置的数据结构,但在一些复杂的应用场景中,原生数据结构可能无法满足特定需求。这时,一个功能强大、易于使用的数据…...
AccessoriesqueryController
目录 1、 AccessoriesqueryController 1.1、 库存配件查询 1.2、 查询仓库 1.2.1、 //把数据库数据加到表格:跟默认然一行数据进行合并 1.3、 /// 查询 1.3.1、 配件编码查询 1.3.2、 配件名称查询 1.3.3、 配件类型查询 AccessoriesqueryControlle…...

M3u8视频由手机拷贝到电脑之后,通过potplayer播放报错找不到文件地址怎么解决?
该文章前面三节主要介绍M3u8视频是什么,视频播放错误(找不到地址)的解决方法在后面 M3U8是一种多媒体播放列表文件格式,主要用于流媒体播放。 一、文件格式特点 1. 文本文件:M3U8是一个采用 UTF-8 编码的文本文件,这意味着它可…...

【分布式微服务云原生】windows+docker+mysql5.7.44一主一从主从复制
目录 1. 主库设置2. 从库设置3. 验证主从复制内容汇总表格 摘要: 在Windows系统上通过Docker部署MySQL主从复制,以下是详细的步骤和命令,帮助你设置一主一从的MySQL复制环境。 1. 主库设置 步骤1:运行MySQL主库容器 docker run …...
鸿蒙NEXT开发-界面渲染(条件和循环)(基于最新api12稳定版)
注意:博主有个鸿蒙专栏,里面从上到下有关于鸿蒙next的教学文档,大家感兴趣可以学习下 如果大家觉得博主文章写的好的话,可以点下关注,博主会一直更新鸿蒙next相关知识 专栏地址: https://blog.csdn.net/qq_56760790/…...

TypeScript 设计模式之【状态模式】
文章目录 状态模式:优雅切换的交通信号灯状态模式的奥秘状态模式有什么利与弊?如何使用状态模式来优化你的系统代码实现案例状态模式的主要优点状态模式的主要缺点状态模式的适用场景总结 状态模式:优雅切换的交通信号灯 当你站在繁忙的十字路口&#…...
MongoDB 聚合管道
参考: 聚合管道 - MongoDB 手册 v7.0 介绍 聚合管道由一个或多个处理文档的阶段组成: 每个阶段对输入文档执行一个操作。例如,某个阶段可以过滤文档、对文档进行分组并计算值。 从一个阶段输出的文档将传递到下一阶段。 一个聚合管道可以返回针对文档…...

python-patterns:Python 设计模式大全
python-patterns 是一个开源的 Python 项目,它提供了各种经典的设计模式的 Python 实现。设计模式是一种针对常见软件设计问题的可复用解决方案,通过使用设计模式,开发者可以编写出结构更加合理、易于维护和扩展的代码。 Python 是一门动态语…...
Nginx编译所需基本库pcre、zlib、openssl
一、基本库介绍 pcre:(Perl Compatible Regular Expressions) 是一个用 C 语言编写的正则表达式库,用于进行文本匹配和搜索。它提供了与 Perl 正则表达式兼容的功能,并且广泛用于许多不同的软件项目中,如网…...
C#进阶:探索嵌套类、匿名类及对象初始化器的强大运用
在C#中,嵌套类、匿名类以及对象初始化器是几种强大的特性,它们可以极大地提高代码的可读性和灵活性。下面分别介绍这些特性的运用。 1. 嵌套类 嵌套类是指定义在另一个类内部的类。内部类可以访问其外围类的所有成员(包括私有成员ÿ…...
匈牙利算法模板
P3386 【模板】二分图最大匹配 - 洛谷 | 计算机科学教育新生态 (luogu.com.cn) 思路:最模板的一集.还未匹配则匹配,否则之前一个给现在这个让位置. int n,m,e; vector<int> vct[505]; int match[505]; bool vis[505]; bool mark[505][505]; bool dfs(int s)…...

ubuntu 安装harbor
#安装包 wget https://github.com/goharbor/harbor/releases/download/v2.10.3/harbor-offline-installer-v2.10.3.tgz wget https://github.com/goharbor/harbor/releases/download/v2.10.3/harbor-offline-installer-v2.10.3.tgz.asc#导入签名公钥 gpg --keyserver hkps://ke…...
Python/大数据/机器识别毕业设计选题题目推荐
基于Python和Diango在线购物商城系统报告文档指导搭建视频 基于深度学习的人脸识别与管理系统,Python实现 基于Python/机器学习链家网新房数据可视化及预测系统 Python豆瓣电影情感分析推荐系统爬虫可视化,过滤算法 基于python的django框架生鲜商城管…...
基于Python的人工智能应用案例系列(17):LSTM正弦波预测
概述 本案例展示了如何使用LSTM(长短期记忆网络)来预测正弦波序列的未来值。由于正弦波具有周期性,传统的神经网络难以准确预测其上升或下降趋势,而LSTM则能够通过学习值的模式来进行更精准的预测。本案例将训练LSTM模型并预测正弦…...

Python空间地表联动贝叶斯地震风险计算模型
🎯要点 使用贝叶斯推断模型兼顾路径和场地效应,量化传统地理统计曲线拟合技术。使用破裂和场地特征等地质信息以及事件间残差和事件内残差描述数学模型模型使用欧几里得距离度量、角距离度量和土壤差异性度量确定贝叶斯先验分布和后验分布参数ÿ…...

虚幻引擎-设置UI自适应屏幕大小
在游戏中,如果想实现不同分辨率下,都可以支持当前的UI界面布局,都需要用到锚点功能。 虚幻引擎中的UI锚点(Anchor)是指控件在屏幕或父物体上的固定点,用于确定控件的位置和布局。 锚点的作用是确保UI元…...

C++继承的三种方式[ACCESS]
C继承的定义 两个类的继承关系在派生类中声明,派生类定义使用以下语法: class DerivedClass: [ACCESS] BaseClass{ /…/ }; 冒号(:)后的[ACCESS]是继承的最高权限级别符,可以是以下三个值(存取权限级别&am…...

idea 同一个项目不同模块如何设置不同的jdk版本
在IntelliJ IDEA中,可以为同一个项目中的不同模块设置不同的JDK版本。这样做可以让你在同一个项目中同时使用多个Java版本,这对于需要兼容多个Java版本的开发非常有用。以下是设置步骤: 打开项目设置: 在IDEA中,打开你…...

1-仙灵之谜(区块链游戏详情介绍)
1-仙灵之谜(区块链游戏详情介绍) 前言(该游戏仅供娱乐)正文 前言(该游戏仅供娱乐) 依稀记得本科那会儿参加了一个区块链实验室,那时每周末大家都会爬山或者抽出一下午讨论区块链以及未来&#x…...

基于51单片机的温湿度上下限监测预警proteus仿真
地址:https://pan.baidu.com/s/1hSprWBYhKKx8Txzaj33YPA?pwdjp3d 提取码:1234 仿真图: 芯片/模块的特点: AT89C52/AT89C51简介: AT89C52/AT89C51是一款经典的8位单片机,是意法半导体(STMic…...

AI-调查研究-01-正念冥想有用吗?对健康的影响及科学指南
点一下关注吧!!!非常感谢!!持续更新!!! 🚀 AI篇持续更新中!(长期更新) 目前2025年06月05日更新到: AI炼丹日志-28 - Aud…...
内存分配函数malloc kmalloc vmalloc
内存分配函数malloc kmalloc vmalloc malloc实现步骤: 1)请求大小调整:首先,malloc 需要调整用户请求的大小,以适应内部数据结构(例如,可能需要存储额外的元数据)。通常,这包括对齐调整,确保分配的内存地址满足特定硬件要求(如对齐到8字节或16字节边界)。 2)空闲…...
【杂谈】-递归进化:人工智能的自我改进与监管挑战
递归进化:人工智能的自我改进与监管挑战 文章目录 递归进化:人工智能的自我改进与监管挑战1、自我改进型人工智能的崛起2、人工智能如何挑战人类监管?3、确保人工智能受控的策略4、人类在人工智能发展中的角色5、平衡自主性与控制力6、总结与…...

CTF show Web 红包题第六弹
提示 1.不是SQL注入 2.需要找关键源码 思路 进入页面发现是一个登录框,很难让人不联想到SQL注入,但提示都说了不是SQL注入,所以就不往这方面想了 先查看一下网页源码,发现一段JavaScript代码,有一个关键类ctfs…...
Oracle查询表空间大小
1 查询数据库中所有的表空间以及表空间所占空间的大小 SELECTtablespace_name,sum( bytes ) / 1024 / 1024 FROMdba_data_files GROUP BYtablespace_name; 2 Oracle查询表空间大小及每个表所占空间的大小 SELECTtablespace_name,file_id,file_name,round( bytes / ( 1024 …...

Debian系统简介
目录 Debian系统介绍 Debian版本介绍 Debian软件源介绍 软件包管理工具dpkg dpkg核心指令详解 安装软件包 卸载软件包 查询软件包状态 验证软件包完整性 手动处理依赖关系 dpkg vs apt Debian系统介绍 Debian 和 Ubuntu 都是基于 Debian内核 的 Linux 发行版ÿ…...

8k长序列建模,蛋白质语言模型Prot42仅利用目标蛋白序列即可生成高亲和力结合剂
蛋白质结合剂(如抗体、抑制肽)在疾病诊断、成像分析及靶向药物递送等关键场景中发挥着不可替代的作用。传统上,高特异性蛋白质结合剂的开发高度依赖噬菌体展示、定向进化等实验技术,但这类方法普遍面临资源消耗巨大、研发周期冗长…...

理解 MCP 工作流:使用 Ollama 和 LangChain 构建本地 MCP 客户端
🌟 什么是 MCP? 模型控制协议 (MCP) 是一种创新的协议,旨在无缝连接 AI 模型与应用程序。 MCP 是一个开源协议,它标准化了我们的 LLM 应用程序连接所需工具和数据源并与之协作的方式。 可以把它想象成你的 AI 模型 和想要使用它…...
大语言模型如何处理长文本?常用文本分割技术详解
为什么需要文本分割? 引言:为什么需要文本分割?一、基础文本分割方法1. 按段落分割(Paragraph Splitting)2. 按句子分割(Sentence Splitting)二、高级文本分割策略3. 重叠分割(Sliding Window)4. 递归分割(Recursive Splitting)三、生产级工具推荐5. 使用LangChain的…...
高防服务器能够抵御哪些网络攻击呢?
高防服务器作为一种有着高度防御能力的服务器,可以帮助网站应对分布式拒绝服务攻击,有效识别和清理一些恶意的网络流量,为用户提供安全且稳定的网络环境,那么,高防服务器一般都可以抵御哪些网络攻击呢?下面…...