当前位置: 首页 > news >正文

OPENCV判断图像中目标物位置及多目标物聚类

文章目录


在最近的项目中,又碰到一个有意思的问题需要通过图像算法来解决。就是显微拍摄的到的医疗图像中,有时候目标物比较偏,也就是在图像的比较偏的位置,需要通过移动样本,将目标物置于视野正中央,然后再次进行拍摄。

就类似于下面的图像:

基于这个需求,在图像上就需要使用图像算法进行判断(没有必要使用深度网络的时候就不要用,太浪费资源了)。

对于上面的图像,基本的处理逻辑是:

  1. 因为目标物是细胞,也就是图中的一个一个的圈圈,需求就是要让尽可能多的细胞位于图像正中央。
  2. 目标物的粘连比较少,所以基于阈值分割的基本逻辑应该是可以将所需要的目标物提取出来(这一块在python的opencv操作记录11——阈值分割这一篇已经讲过了)。
  3. 分割完之后再通过opencv提取轮廓的方法将轮廓提取出来。
  4. 提取完轮廓之后,对每个轮廓求外接矩形。
  5. 利用业务特性对相应的轮廓做一些过滤操作。
  6. 将多个矩形做一个聚类,这里可以有多种聚类方案,可以先聚类再筛选,也可以根据某个逻辑确定一个质心,然后再根据这个质心再做聚类。
  7. 然后就是调参工作了。

我自己的代码为:

int getCenter(cv::Mat img, cv::Rect& resultRect)
{cv::cvtColor(img, img, cv::COLOR_RGB2GRAY);// 阈值分割cv::threshold(img, img, 50, 255, cv::THRESH_BINARY);// 提取轮廓std::vector<cv::Mat> contours;cv::findContours(img, contours, cv::RETR_LIST, cv::CHAIN_APPROX_NONE);// 逐步聚类的方法std::vector<float> xs, ys;// 初始化质心float centroid_x = 0.0f, centroid_y = 0.0f;// 找到第一个质心,我这里是使用面积最大的作为第一个质心,代码没有贴上来int maxIndex = 0;float maxSocre = 0.0f;// 迭代计算质心for (int i = 0; i < contours.size(); i++){score = cv::contourArea(contours[i]);// 判断是一个有效区域if (score > threshold_score){cv::Rect rect = cv::boundingRect(contours[i]);// 判断是否离中心比较远, 第一次不做判断if (abs(rect.x + (rect.width / 2) - centroid_x) > centroidThresholdX){continue;}if (abs(rect.y + (rect.height / 2) - centroid_y) > centroidThresholdY){continue;}// 纳入下一次的质心计算xs.push_back(rect.x + rect.width / 2);ys.push_back(rect.y + rect.height / 2);float tempCenterX = 0.0f;for (int x = 0; x < xs.size(); x++){tempCenterX += xs[x];}centroid_x = tempCenterX / xs.size();float tempCenterY = 0.0f;for (int y = 0; y < ys.size(); y++){tempCenterY += ys[y];}centroid_y = tempCenterY / ys.size();}}for(int z = 0; z < xs.size(); z++){ if (xs[z] < minX){minX = xs[z];}if (xs[z] > maxX){maxX = xs[z];}if (ys[z] < minY){minY = ys[z];}if (ys[z] > maxY){maxY = ys[z];}}std::cout << "maxX:" << maxX << "minX:" << minX << "maxY:" << maxY << "minY:" << minY << std::endl;resultRect.x = minX;resultRect.y = minY;resultRect.width = maxX - minX;resultRect.height = maxY - minY;return 0;
}

最后的结果是:

调整的距离就是这个矩形的中央到整个图像的中央坐标了。

相关文章:

OPENCV判断图像中目标物位置及多目标物聚类

文章目录 在最近的项目中&#xff0c;又碰到一个有意思的问题需要通过图像算法来解决。就是显微拍摄的到的医疗图像中&#xff0c;有时候目标物比较偏&#xff0c;也就是在图像的比较偏的位置&#xff0c;需要通过移动样本&#xff0c;将目标物置于视野正中央&#xff0c;然后再…...

分布式理论:拜占庭将军问题

分布式理论&#xff1a;拜占庭将军问题 介绍拜占庭将军的故事将军的难题 解决方案口信消息型拜占庭问题之解流程总结 签名消息型拜占庭问题之解 总结 介绍 拜占庭将军问题是对分布式共识问题的一种情景化描述&#xff0c;由兰伯特于1082首次发表《The Byzantine Generals Prob…...

从零开始Ubuntu24.04上Docker构建自动化部署(三)Docker安装Nginx

安装nginx sudo docker pull nginx 启动nginx 宿主机创建目录 sudo mkdir -p /home/nginx/{conf,conf.d,html,logs} 先启动nginx sudo docker run -d --name mynginx -p 80:80 nginx 宿主机上拷贝docker上nginx服务上文件到本地目录 sudo docker cp mynginx:/etc/nginx/ngin…...

阿里云 SAE Web:百毫秒高弹性的实时事件中心的架构和挑战

作者&#xff1a;胡志广(独鳌) 背景 Serverless 应用引擎 SAE 事件中心主要面向早期的 SAE 控制台只有针对于应用维度的事件&#xff0c;这个事件是 K8s 原生的事件&#xff0c;其实绝大多数的用户并不会关心&#xff0c;同时也可能看不懂。而事件中心&#xff0c;是希望能够…...

人口普查管理系统基于VUE+SpringBoot+Spring+SpringMVC+MyBatis开发设计与实现

目录 1. 系统概述 2. 系统架构设计 3. 技术实现细节 3.1 前端实现 3.2 后端实现 3.3 数据库设计 4. 安全性设计 5. 效果展示 ​编辑​编辑 6. 测试与部署 7. 示例代码 8. 结论与展望 一个基于 Vue Spring Boot Spring Spring MVC MyBatis 的人口普查管理…...

使用VBA快速将文本转换为Word表格

Word提供了一个强大的文本转表格的功能&#xff0c;结合VBA可以实现文本快速转换表格。 示例文档如下所示。 现在需要将上述文档内容转换为如下格式的表格&#xff0c;表格内容的起始标志为。 示例代码如下。 Sub SearchTab()Application.DefaultTableSeparator "*&quo…...

力扣题解1870

这道题是一个典型的算法题&#xff0c;涉及计算在限制的时间内列车速度的最小值。这是一个优化问题&#xff0c;通常需要使用二分查找来求解。 题目描述&#xff08;中等&#xff09; 准时到达的列车最小时速 给你一个浮点数 hour &#xff0c;表示你到达办公室可用的总通勤时…...

D3.js数据可视化基础——基于Notepad++、IDEA前端开发

实验:D3.js数据可视化基础 1、实验名称 D3数据可视化基础 2、实验目的 熟悉D3数据可视化的使用方法。 3、实验原理 D3 的全称是(Data-Driven Documents),是一个被数据驱动的文档,其实就是一个 JavaScript 的函数库,使用它主要是用来做数据可视化的。本次实…...

在Robot Framework中Run Keyword If的用法

基本用法使用 ELSE使用 ELSE IF使用内置变量使用Python表达式本文永久更新地址: 在Robot Framework中&#xff0c;Run Keyword If 是一个条件执行的关键字&#xff0c;它允许根据某个条件来决定是否执行某个关键字。下面是 Run Keyword If 的基本用法&#xff1a; Run Keyword…...

虚拟机ip突然看不了了

打印大致如下&#xff1a; 解决办法 如果您发现虚拟机的IP地址与主机不在同一网段&#xff0c;可以采取的措施之一是调整网络设置。将虚拟机的网络模式更改为桥接模式&#xff0c;这样它就会获得与主机相同的IP地址&#xff0c;从而处于同一网段。或者&#xff0c;您可以使用…...

LeetCode[中等] 763. 划分字母区间

给你一个字符串 s 。我们要把这个字符串划分为尽可能多的片段&#xff0c;同一字母最多出现在一个片段中。 注意&#xff0c;划分结果需要满足&#xff1a;将所有划分结果按顺序连接&#xff0c;得到的字符串仍然是 s 。 返回一个表示每个字符串片段的长度的列表。 思路 贪心…...

Java LeetCode每日一题

997. 找到小镇的法官 package JavaExercise20241002;public class JavaExercise {public static void main(String[] args) {int[][] array {{1,3},{2,3},{3,1}};Solution solution new Solution();System.out.println(solution.findJudge(3, array));} }class Solution {pu…...

数据结构--集合框架

目录 1. 什么是集合框架 2. 背后所涉及的数据结构以及算法 2.1 什么是数据结构 2.2 容器背后对应的数据结构 1. 什么是集合框架 Java 集合框架 Java Collection Framework &#xff0c;又被称为容器 container &#xff0c;是定义在 java.util 包下的一组接口 int…...

Win10鼠标总是频繁自动失去焦点-非常有效-重启之后立竿见影

针对Win10鼠标频繁自动失去焦点的问题&#xff0c;可以尝试以下解决方案&#xff1a; 一、修改注册表&#xff08;最有效的方法-重启之后立竿见影&#xff09; 打开注册表编辑器&#xff1a; 按下WindowsR组合键&#xff0c;打开运行窗口。在运行窗口中输入“regedit”&#x…...

智能涌现|迎接智能时代,算力产业重构未来

前言 OpenAI首席执行官山姆奥特曼在《智能时代》中描绘了一个令人振奋的未来图景&#xff0c;其中算力产业将扮演至关重要的角色。奥特曼预测&#xff0c;我们可能在“几千天内”迎来超级智能&#xff0c;这一进程将极大加速社会结构的智能化转型。 这一预测与算力产业的未来…...

关于HTML 案例_个人简历展示01

案例效果展示 代码 <!DOCTYPE html> <lang"en"> <head><meta charset"UTF-8"><meta name"viewport" content"widthdevice-width, initial-scale1.0"><title>个人简历信息</title> </he…...

【前端开发入门】css快速入门

目录 引言一、css盒模型1. 盒模型概念2. 盒模型案例 二、css编写1. html文件内部编写1.1 标签style属性编写1.2 css选择器关联1.2.1 id选择器1.2.2 class选择器1.2.3 标签选择器1.2.4 css选择器作用域1.2.5 其他选择器1.2.6 各css选择器优先级 2. 单独维护css文件2.1 创建css文…...

java中创建不可变集合

一.应用场景 二.创建不可变集合的书写格式&#xff08;List&#xff0c;Set&#xff0c;Map) List集合 package com.njau.d9_immutable;import java.util.Iterator; import java.util.List;/*** 创建不可变集合:List.of()方法* "张三","李四","王五…...

D25【 python 接口自动化学习】- python 基础之判断与循环

day25 for 循环 学习日期&#xff1a;20241002 学习目标&#xff1a;判断与循环&#xfe63;-35 for 循环&#xff1a;如何遍历一个对象里的所有元素&#xff1f; 学习笔记&#xff1a; for 循环与while循环的区别 for循环的定义 使用for循环遍历序列 使用for循环遍历字典…...

HTTP1.0和HTTP1.1有什么区别

HTTP/1.0 和 HTTP/1.1 是两个不同版本的 HTTP 协议。虽然它们的核心功能都是提供网页数据传输&#xff0c;但 HTTP/1.1 对 HTTP/1.0 做了很多改进&#xff0c;提升了性能和灵活性。以下是它们的主要区别&#xff1a; 1. 持久连接&#xff08;Persistent Connection&#xff09…...

地震勘探——干扰波识别、井中地震时距曲线特点

目录 干扰波识别反射波地震勘探的干扰波 井中地震时距曲线特点 干扰波识别 有效波&#xff1a;可以用来解决所提出的地质任务的波&#xff1b;干扰波&#xff1a;所有妨碍辨认、追踪有效波的其他波。 地震勘探中&#xff0c;有效波和干扰波是相对的。例如&#xff0c;在反射波…...

AtCoder 第409​场初级竞赛 A~E题解

A Conflict 【题目链接】 原题链接&#xff1a;A - Conflict 【考点】 枚举 【题目大意】 找到是否有两人都想要的物品。 【解析】 遍历两端字符串&#xff0c;只有在同时为 o 时输出 Yes 并结束程序&#xff0c;否则输出 No。 【难度】 GESP三级 【代码参考】 #i…...

ESP32读取DHT11温湿度数据

芯片&#xff1a;ESP32 环境&#xff1a;Arduino 一、安装DHT11传感器库 红框的库&#xff0c;别安装错了 二、代码 注意&#xff0c;DATA口要连接在D15上 #include "DHT.h" // 包含DHT库#define DHTPIN 15 // 定义DHT11数据引脚连接到ESP32的GPIO15 #define D…...

大语言模型如何处理长文本?常用文本分割技术详解

为什么需要文本分割? 引言:为什么需要文本分割?一、基础文本分割方法1. 按段落分割(Paragraph Splitting)2. 按句子分割(Sentence Splitting)二、高级文本分割策略3. 重叠分割(Sliding Window)4. 递归分割(Recursive Splitting)三、生产级工具推荐5. 使用LangChain的…...

Cinnamon修改面板小工具图标

Cinnamon开始菜单-CSDN博客 设置模块都是做好的&#xff0c;比GNOME简单得多&#xff01; 在 applet.js 里增加 const Settings imports.ui.settings;this.settings new Settings.AppletSettings(this, HTYMenusonichy, instance_id); this.settings.bind(menu-icon, menu…...

sqlserver 根据指定字符 解析拼接字符串

DECLARE LotNo NVARCHAR(50)A,B,C DECLARE xml XML ( SELECT <x> REPLACE(LotNo, ,, </x><x>) </x> ) DECLARE ErrorCode NVARCHAR(50) -- 提取 XML 中的值 SELECT value x.value(., VARCHAR(MAX))…...

uniapp微信小程序视频实时流+pc端预览方案

方案类型技术实现是否免费优点缺点适用场景延迟范围开发复杂度​WebSocket图片帧​定时拍照Base64传输✅ 完全免费无需服务器 纯前端实现高延迟高流量 帧率极低个人demo测试 超低频监控500ms-2s⭐⭐​RTMP推流​TRTC/即构SDK推流❌ 付费方案 &#xff08;部分有免费额度&#x…...

拉力测试cuda pytorch 把 4070显卡拉满

import torch import timedef stress_test_gpu(matrix_size16384, duration300):"""对GPU进行压力测试&#xff0c;通过持续的矩阵乘法来最大化GPU利用率参数:matrix_size: 矩阵维度大小&#xff0c;增大可提高计算复杂度duration: 测试持续时间&#xff08;秒&…...

在WSL2的Ubuntu镜像中安装Docker

Docker官网链接: https://docs.docker.com/engine/install/ubuntu/ 1、运行以下命令卸载所有冲突的软件包&#xff1a; for pkg in docker.io docker-doc docker-compose docker-compose-v2 podman-docker containerd runc; do sudo apt-get remove $pkg; done2、设置Docker…...

【学习笔记】深入理解Java虚拟机学习笔记——第4章 虚拟机性能监控,故障处理工具

第2章 虚拟机性能监控&#xff0c;故障处理工具 4.1 概述 略 4.2 基础故障处理工具 4.2.1 jps:虚拟机进程状况工具 命令&#xff1a;jps [options] [hostid] 功能&#xff1a;本地虚拟机进程显示进程ID&#xff08;与ps相同&#xff09;&#xff0c;可同时显示主类&#x…...