当前位置: 首页 > news >正文

深度学习与数学归纳法

最近发现,深度学习可以分为两个主要的阶段,分别是前向推理以及反向传播,分别对应着网络的推理和参数训练两个步骤。其中推理有时候也称为归纳推理。

在这里插入图片描述

在做参数训练的时候,本质上是在利用历史数据求网络参数的先验分布; p ( θ ∣ x , y ) p(\theta | x,y) p(θx,y)
在推理的时候,本质是在基于训练好的参数进行极大似然估计。 p ( y ∣ x , θ ) p(y |x, \theta) p(yx,θ)

此外,深度学习解决问题时,往往先假设所有的参数都能够训练到最优 θ ∗ \theta^* θ,然后在这个最优训练参数假设下构建前向网络进行建模。等建模表征完之后,再去基于数据和优化器把参数训练到最优。这个思想其实和数学归纳法里面的先假设某个条件成立,再去做其他事情,然后再反过来优化这个条件很像,也和EM估计的思想很像。

这也可以解释为什么很多网络结构的改进的论文,本质上是提供了参数交互的接口,让网络有机会对某种类型的数据进行建模和表征,然后再去对其进行训练。

相关文章:

深度学习与数学归纳法

最近发现,深度学习可以分为两个主要的阶段,分别是前向推理以及反向传播,分别对应着网络的推理和参数训练两个步骤。其中推理有时候也称为归纳推理。 在做参数训练的时候,本质上是在利用历史数据求网络参数的先验分布; …...

《Linux从小白到高手》理论篇(六):Linux软件安装一篇通

List item 本篇介绍Linux软件安装相关的操作命令,看完本文,有关Linux软件安装相关操作的常用命令你就掌握了99%了。 Linux软件安装 RPM RPM软件的安装、删除、更新只有root权限才能使用;查询功能任何用户都可以操作;如果普通用…...

【Spring】运行Spring Boot项目,请求响应流程分析以及404和500报错

1. 运行项目 import org.springframework.boot.SpringApplication; import org.springframework.boot.autoconfigure.SpringBootApplication; SpringBootApplication public class Application { public static void main(String[] args) { SpringApplication.run(Appl…...

②EtherCAT转Modbus485RTU网关多路同步高速采集无需编程串口服务器

EtherCAT转Modbus485RTU网关多路同步高速采集无需编程串口服务器https://item.taobao.com/item.htm?ftt&id798036415719 EtherCAT 串口网关 EtherCAT 转 RS485 (接上一章) 自由协议通信步骤 (以MS-A2-1041为例) 接收与…...

matlab-对比两张图片的HSV分量的差值并形成直方图

%对比两张图片的HSV分量的差值并形成直方图,改个路径就能用,图片分辨率要一致 close all; clear all; clc; I1imread(E:\test\resources\image\1.jpg); I2imread(E:\test\resources\image\2.jpg); HSV1 rgb2ntsc(I1); HSV2 rgb2ntsc(I2); %HSV,HSV 代…...

微服务SpringGateway解析部署使用全流程

官网地址: Spring Cloud Gateway 目录 1、SpringGateway简介 1、什么是网关 2、为什么用网关【为了转发】 2、应用: 1.启动nacos 2.创建网关项目 3.网关配置1 4.网关配置2【了解】 5.过滤器配置【了解】 1、SpringGateway简介 核心功能有三个&…...

Solidity 存储和内存管理:深入理解与高效优化

在 Solidity 中,存储和内存管理是编写高效智能合约的关键组成部分。合约执行的每一步操作都可能涉及到数据的存储和读取,而这些操作对 gas 的消耗有很大影响。因此,理解 Solidity 的存储模型以及如何优化数据的管理对于合约的安全性、性能和成…...

机器学习篇-day02-KNN算法实现鸢尾花模型和手写数字识别模型

一. KNN简介 KNN思想 K-近邻算法(K Nearest Neighbor,简称KNN)。比如:根据你的“邻居”来推断出你的类别 KNN算法思想:如果一个样本在特征空间中的k 个最相似的样本中的大多数属于某一个类别,则该样本也属…...

【C++】STL--vector

1.vector的介绍 我们先来看看vector的文档介绍,实际中我们只要熟悉相关接口就好了。 成员函数 使用STL的三个境界:能用,明理,能扩展 ,那么下面学习vector,我们也是按照这个方法去学习 2 vector的使用 v…...

Java使用Redis的详细教程

Redis是一个基于内存的key-value结构数据库,即非关系型数据库,具有高性能、丰富的数据类型、持久化、高可用性和分布式等特点。在Java项目中,Redis通常用于缓存、分布式锁、计数器、消息队列和排行榜等场景。以下是在Java中使用Redis的详细教…...

严重 Zimbra RCE 漏洞遭大规模利用(CVE-2024-45519)

攻击者正在积极利用 CVE-2024-45519,这是一个严重的 Zimbra 漏洞,该漏洞允许他们在易受攻击的安装上执行任意命令。 Proofpoint 的威胁研究人员表示,攻击始于 9 月 28 日,几周前,Zimbra 开发人员发布了针对 CVE-2024-…...

php函数积累

对称函数 isset 判断数组arr中是否存在键key 返回值true/false isset(name,$arr) unset 删除数组中的键 需存在key不然抛出异常 unset($arr[name]) json_encode 数据转json格式 json_encode($arr) 一般形式 指定字符编码形式 json_decode json格式转原有数据格式 json_d…...

前端项目场景相关的面试题,包含验证码、图片存储、登录鉴权、动态路由、组件划分等项目场景实际的面试题

项目场景面试题 如何防止短信验证码被刷 问题场景 添加倒计时和图片滑动验证,避免不必要的资源浪费 发送短信验证码需要费用发送短信消耗服务器资源 公司的图片、视频、文件资源如何存储的 传统模式 分开存储到数据服务器,托管服务器到云端 缺点&…...

uniapp 上了原生的 echarts 图表插件了 兼容性还行

插件地址:echarts - DCloud 插件市场 兼容性这块儿不知道后期会不会支持其他浏览器 H5 的话建议可以用原生的不用这个插件...

共享单车轨迹数据分析:以厦门市共享单车数据为例(八)

副标题:基于POI数据的站点综合评价——以厦门市为例(三) 什么是优劣解距离法(TOPSIS)? 优劣解距离法(Technique for Order Preference by Similarity to Ideal Solution,简称TOPSI…...

sentinel原理源码分析系列(二)-动态规则和transport

本文是sentinel原理源码分析系列第二篇,分析两个组件,动态配置和transport 动态规则 Sentinel提供动态规则机制,依赖配置中心,如nacos,zookeeper,组件支持动态配置,模板类型为规则,支…...

ubuntu切换源方式记录(清华源、中科大源、阿里源)

文章目录 前言一、中科大源二、清华源三、阿里源 前言 记录ubunut切换各个源的方式。 备注:更换源之后使用sudo apt-get update更新索引。 提示:以下是本篇文章正文内容,下面案例可供参考 一、中科大源 地址:https://mirrors.u…...

【10】纯血鸿蒙HarmonyOS NEXT星河版开发0基础学习笔记-泛型基础全解(泛型函数、泛型接口、泛型类)及参数、接口补充

序言: 本文详细讲解了关于ArkTs语言中的泛型,其中包含泛型函数、泛型接口、泛型约束、泛型类及其中参数的使用方法,补充了一部分接口相关的知识,包括接口的继承和具体实现,也写到了一些边边角角的小知识,剩…...

2024年09月CCF-GESP编程能力等级认证C++编程一级真题解析

本文收录于专栏《C++等级认证CCF-GESP真题解析》,专栏总目录:点这里。订阅后可阅读专栏内所有文章。 一、单选题(每题 2 分,共 30 分) 第 1 题 据有关资料,山东大学于1972年研制成功DJL-1计算机,并于1973年投入运行,其综合性能居当时全国第三位。DJL-1计算机运算控制…...

基于多维统计分析与GMM聚类的食品营养特征研究

1.项目背景 在当今社会,随着人们对健康和营养的日益关注,深入了解食品的营养成分及其对人体的影响变得越来越重要,本研究采用了多维度的分析方法,包括营养成分比较分析、统计检验、营养密度分析和高斯混合模型(GMM&am…...

深入浅出Asp.Net Core MVC应用开发系列-AspNetCore中的日志记录

ASP.NET Core 是一个跨平台的开源框架,用于在 Windows、macOS 或 Linux 上生成基于云的新式 Web 应用。 ASP.NET Core 中的日志记录 .NET 通过 ILogger API 支持高性能结构化日志记录,以帮助监视应用程序行为和诊断问题。 可以通过配置不同的记录提供程…...

python打卡day49

知识点回顾: 通道注意力模块复习空间注意力模块CBAM的定义 作业:尝试对今天的模型检查参数数目,并用tensorboard查看训练过程 import torch import torch.nn as nn# 定义通道注意力 class ChannelAttention(nn.Module):def __init__(self,…...

【WiFi帧结构】

文章目录 帧结构MAC头部管理帧 帧结构 Wi-Fi的帧分为三部分组成:MAC头部frame bodyFCS,其中MAC是固定格式的,frame body是可变长度。 MAC头部有frame control,duration,address1,address2,addre…...

Python:操作 Excel 折叠

💖亲爱的技术爱好者们,热烈欢迎来到 Kant2048 的博客!我是 Thomas Kant,很开心能在CSDN上与你们相遇~💖 本博客的精华专栏: 【自动化测试】 【测试经验】 【人工智能】 【Python】 Python 操作 Excel 系列 读取单元格数据按行写入设置行高和列宽自动调整行高和列宽水平…...

学校招生小程序源码介绍

基于ThinkPHPFastAdminUniApp开发的学校招生小程序源码,专为学校招生场景量身打造,功能实用且操作便捷。 从技术架构来看,ThinkPHP提供稳定可靠的后台服务,FastAdmin加速开发流程,UniApp则保障小程序在多端有良好的兼…...

P3 QT项目----记事本(3.8)

3.8 记事本项目总结 项目源码 1.main.cpp #include "widget.h" #include <QApplication> int main(int argc, char *argv[]) {QApplication a(argc, argv);Widget w;w.show();return a.exec(); } 2.widget.cpp #include "widget.h" #include &q…...

苍穹外卖--缓存菜品

1.问题说明 用户端小程序展示的菜品数据都是通过查询数据库获得&#xff0c;如果用户端访问量比较大&#xff0c;数据库访问压力随之增大 2.实现思路 通过Redis来缓存菜品数据&#xff0c;减少数据库查询操作。 缓存逻辑分析&#xff1a; ①每个分类下的菜品保持一份缓存数据…...

Java线上CPU飙高问题排查全指南

一、引言 在Java应用的线上运行环境中&#xff0c;CPU飙高是一个常见且棘手的性能问题。当系统出现CPU飙高时&#xff0c;通常会导致应用响应缓慢&#xff0c;甚至服务不可用&#xff0c;严重影响用户体验和业务运行。因此&#xff0c;掌握一套科学有效的CPU飙高问题排查方法&…...

10-Oracle 23 ai Vector Search 概述和参数

一、Oracle AI Vector Search 概述 企业和个人都在尝试各种AI&#xff0c;使用客户端或是内部自己搭建集成大模型的终端&#xff0c;加速与大型语言模型&#xff08;LLM&#xff09;的结合&#xff0c;同时使用检索增强生成&#xff08;Retrieval Augmented Generation &#…...

push [特殊字符] present

push &#x1f19a; present 前言present和dismiss特点代码演示 push和pop特点代码演示 前言 在 iOS 开发中&#xff0c;push 和 present 是两种不同的视图控制器切换方式&#xff0c;它们有着显著的区别。 present和dismiss 特点 在当前控制器上方新建视图层级需要手动调用…...