Frequency-aware Feature Fusion for Dense Image Prediction 论文阅读
摘要:密集图像预测任务要求具有强类别信息和高分辨率精确空间边界细节的特征。为了实现这一点,现代分层模型通常利用特征融合,直接添加来自深层的上采样粗特征和来自较低层次的高分辨率特征。在本文中,我们观察到融合特征值在对象内的快速变化,由于高频特征的干扰导致类别内不一致。此外,融合特征中模糊的边界缺乏准确的高频,导致边界位移。基于这些观察结果,我们提出了频率感知特征融合(FreqFusion),集成了自适应低通滤波器(ALPF)发生器,偏移发生器和自适应高通滤波器(AHPF)发生器。ALPF生成器预测空间变化的低通滤波器,以衰减对象内的高频组件,减少上采样期间的类内不一致。偏移量发生器通过重采样将不一致的特征替换为更一致的特征来细化大的不一致特征和细边界,而AHPF发生器增强了下采样过程中丢失的高频详细边界信息。综合可视化和定量分析表明,FreqFusion有效地提高了特征一致性和清晰的目标边界。在各种密集预测任务中进行的大量实验证实了其有效性。该代码可在https://github.com/ying-fu/FreqFusion上公开获取。
索引术语:特征融合、特征上采样、密集预测、语义分割、目标检测、实例分割、全景分割
相关文章:
Frequency-aware Feature Fusion for Dense Image Prediction 论文阅读
摘要:密集图像预测任务要求具有强类别信息和高分辨率精确空间边界细节的特征。为了实现这一点,现代分层模型通常利用特征融合,直接添加来自深层的上采样粗特征和来自较低层次的高分辨率特征。在本文中,我们观察到融合特征值在对象内的快速变化…...

Springboot + netty + rabbitmq + myBatis
目录 0.为什么用消息队列1.代码文件创建结构2.pom.xml文件3.三个配置文件开发和生产环境4.Rabbitmq 基础配置类 TtlQueueConfig5.建立netty服务器 rabbitmq消息生产者6.建立常规队列的消费者 Consumer7.建立死信队列的消费者 DeadLetterConsumer8.建立mapper.xml文件9.建立map…...

电磁兼容(EMC):整改案例(四)人体对EFT测试影响有多大?
目录 1. 异常现象 2. 原因分析 3. 整改方案 4. 总结 1. 异常现象 某产品按GB/T 17626.4标准进行电快速瞬变脉冲群测试,测试条件为:频率5kHz/100kHz,测试电压L,N线间2kV,L,N线对PE线4kV。测试过程中需要…...
数据可视化基础:让数据说话
一、引言 在信息洪流中,数据可视化如同灯塔,照亮了数据的海洋,让我们能够洞察数据背后的意 义。 下面是对数据可视化的详细介绍,包括定义、作用、类型、原则、工具方法以及应用场景, 并附上具体的代码示例。 二、数…...
有哪些优化数据库性能的方法?如何定位慢查询?数据库性能优化全攻略:从慢查询定位到高效提升
在现代应用程序开发中,数据库的性能对于整体系统的响应能力至关重要。随着用户数量的增加和数据量的增长,如何优化数据库性能、定位慢查询成了每一个开发者面临的重要挑战。今天,我想和大家分享一些实用的数据库性能优化方法,以及…...

C语言 | Leetcode C语言题解之第450题删除二叉搜索树中的节点
题目: 题解: struct TreeNode* deleteNode(struct TreeNode* root, int key){struct TreeNode *cur root, *curParent NULL;while (cur && cur->val ! key) {curParent cur;if (cur->val > key) {cur cur->left;} else {cur c…...

智慧防灾,科技先行:EasyCVR平台助力地质灾害视频监测系统建设
随着科技的飞速发展,视频监控技术已成为地质灾害监测与预警的重要手段之一。在众多视频监控平台中,EasyCVR视频汇聚平台凭借其强大的视频整合、实时传输、视频处理及分发等能力,在地质灾害场景中展现出显著的应用优势。 一、实时监测与远程监…...
掌握C#核心概念:类、继承、泛型等
C# 是一门功能强大且灵活的面向对象编程语言,它结合了许多现代编程语言的特点和特性。无论你是编程新手,还是有经验的开发者,理解C#中的核心概念都是非常重要的。本文将介绍C#中的类与对象、构造函数和析构函数、方法的重载与重写、继承与多态…...

[VULFOCUS刷题]tomcat-pass-getshell 弱口令
tomcat-pass-getshell 弱口令 启动容器,打开网站 点开manageapp,输入弱口令 tomcat/tomcat 之后在下面上传jsp大马,首先生成一个jsp马 这里我直接使用github别人生成好的 tennc/webshell: This is a webshell open source project (github.…...

golang rpc
RPC(Remote Procedure Call)远程过程调用,简单的理解是一个节点请求另一个节点提供的服务,对应rpc的是本地过程调用,函数调用是最常用的本地过程调用,将本地过程调用变成远程调用会面临着各种问题。 以两数…...

A Learning-Based Approach to Static Program Slicing —— 论文笔记
A Learning-Based Approach to Static Program Slicing OOPLSA’2024 文章目录 A Learning-Based Approach to Static Program Slicing1. Abstract2. Motivation(1) 为什么需要能处理不完整代码(2) 现有方法局限性(3) 验证局限性: 初步实验研究实验设计何为不完整代码实验结果…...
掌握 C# 中的委托与事件机制
C# 中的委托和事件为开发者提供了处理回调、异步编程以及发布订阅模式的强大工具。委托与事件机制在实际应用中非常常见,特别是在事件驱动编程和 GUI 应用中。本文将带你深入理解委托的定义、匿名方法、Lambda 表达式、事件机制以及多播委托的使用。 1. 委托&#x…...

使用微服务Spring Cloud集成Kafka实现异步通信(消费者)
1、本文架构 本文目标是使用微服务Spring Cloud集成Kafka实现异步通信。其中Kafka Server部署在Ubuntu虚拟机上,微服务部署在Windows 11系统上,Kafka Producer微服务和Kafka Consumer微服务分别注册到Eureka注册中心。Kafka Producer和Kafka Consumer之…...

docker pull 超时Timeout失败的解决办法
当国内开发者docker pull遇到如下提示时,不要惊讶 [rootvm /]# docker pull postgres Using default tag: latest Error response from daemon: Get "https://registry-1.docker.io/v2/": dial tcp 128.121.146.235:443: i/o timeout [rootvm /]# 自2024…...

YOLOv7改进之主干DAMOYOLO结构,结合 CReToNeXt 结构,打造高性能检测器
一、DAMOYOLO理论部分 论文地址:2211.15444 (arxiv.org) 在本报告中,我们提出了一种快速准确的对象检测方法,称为 DAMO-YOLO,它实现了比最先进的 YOLO 系列更高的性能。DAMO-YOLO 是从 YOLO 扩展而来的,具有一些新技术,包括神经架构搜索 (NAS)、高效的重新参数化广义 …...

进度条(倒计时)Linux
\r回车(回到当前行开头) \n换行 行缓冲区概念 什么现象? 什么现象?? 什么现象??? 自己总结: #pragma once 防止头文件被重复包含 倒计时 在main.c中,windows.h是不可以用的&…...

[每周一更]-(第117期):硬盘分区表类型:MBR和GPT区别
文章目录 1. **支持的磁盘容量**2. **分区数量**3. **引导方式**4. **冗余和数据恢复**5. **兼容性**6. **安全性**7. **操作系统支持**8. 对比 国庆假期前补一篇 在一次扫描机械硬盘故障的问题,发现我本机SSD和机械硬盘的分类型不一样,分别是GPT和MBR&a…...

河南移动:核心营业系统稳定运行超300天,数据库分布式升级实践|OceanBase案例
河南移动,作为电信全业务运营企业,不仅拥有庞大的客户群体和业务规模,还引领着业务产品与服务体系的创新发展。河南移动的原有核心营业系统承载着超过6000万的庞大用户量,管理着超过80TB的海量数据,因此也面临着数据规…...

22.1 k8s不同role级别的服务发现
本节重点介绍 : 服务发现的应用3种采集的k8s服务发现role 容器基础资源指标 role :nodek8s服务组件指标 role :endpoint部署在pod中业务埋点指标 role :pod 服务发现的应用 所有组件将自身指标暴露在各自的服务端口上,prometheus通过pull过来拉取指标但是promet…...

OpenCV计算机视觉库
计算机视觉和图像处理 Tensorflow入门深度神经网络图像分类目标检测图像分割OpenCVPytorchNLP自然语言处理 OpenCV 一、OpenCV简介1.1 简介1.2 OpenCV部署1.3 OpenCV模块 二、OpenCV基本操作2.1 图像的基本操作2.1.1 图像的IO操作2.1.2 绘制几何图像2.1.3 获取并修改图像的像素…...

树莓派超全系列教程文档--(61)树莓派摄像头高级使用方法
树莓派摄像头高级使用方法 配置通过调谐文件来调整相机行为 使用多个摄像头安装 libcam 和 rpicam-apps依赖关系开发包 文章来源: http://raspberry.dns8844.cn/documentation 原文网址 配置 大多数用例自动工作,无需更改相机配置。但是,一…...

通过Wrangler CLI在worker中创建数据库和表
官方使用文档:Getting started Cloudflare D1 docs 创建数据库 在命令行中执行完成之后,会在本地和远程创建数据库: npx wranglerlatest d1 create prod-d1-tutorial 在cf中就可以看到数据库: 现在,您的Cloudfla…...
vue3 字体颜色设置的多种方式
在Vue 3中设置字体颜色可以通过多种方式实现,这取决于你是想在组件内部直接设置,还是在CSS/SCSS/LESS等样式文件中定义。以下是几种常见的方法: 1. 内联样式 你可以直接在模板中使用style绑定来设置字体颜色。 <template><div :s…...
【ROS】Nav2源码之nav2_behavior_tree-行为树节点列表
1、行为树节点分类 在 Nav2(Navigation2)的行为树框架中,行为树节点插件按照功能分为 Action(动作节点)、Condition(条件节点)、Control(控制节点) 和 Decorator(装饰节点) 四类。 1.1 动作节点 Action 执行具体的机器人操作或任务,直接与硬件、传感器或外部系统…...

零基础设计模式——行为型模式 - 责任链模式
第四部分:行为型模式 - 责任链模式 (Chain of Responsibility Pattern) 欢迎来到行为型模式的学习!行为型模式关注对象之间的职责分配、算法封装和对象间的交互。我们将学习的第一个行为型模式是责任链模式。 核心思想:使多个对象都有机会处…...

【数据分析】R版IntelliGenes用于生物标志物发现的可解释机器学习
禁止商业或二改转载,仅供自学使用,侵权必究,如需截取部分内容请后台联系作者! 文章目录 介绍流程步骤1. 输入数据2. 特征选择3. 模型训练4. I-Genes 评分计算5. 输出结果 IntelliGenesR 安装包1. 特征选择2. 模型训练和评估3. I-Genes 评分计…...
基于Java Swing的电子通讯录设计与实现:附系统托盘功能代码详解
JAVASQL电子通讯录带系统托盘 一、系统概述 本电子通讯录系统采用Java Swing开发桌面应用,结合SQLite数据库实现联系人管理功能,并集成系统托盘功能提升用户体验。系统支持联系人的增删改查、分组管理、搜索过滤等功能,同时可以最小化到系统…...

iview框架主题色的应用
1.下载 less要使用3.0.0以下的版本 npm install less2.7.3 npm install less-loader4.0.52./src/config/theme.js文件 module.exports {yellow: {theme-color: #FDCE04},blue: {theme-color: #547CE7} }在sass中使用theme配置的颜色主题,无需引入,直接可…...
Caliper 配置文件解析:fisco-bcos.json
config.yaml 文件 config.yaml 是 Caliper 的主配置文件,通常包含以下内容: test:name: fisco-bcos-test # 测试名称description: Performance test of FISCO-BCOS # 测试描述workers:type: local # 工作进程类型number: 5 # 工作进程数量monitor:type: - docker- pro…...
「全栈技术解析」推客小程序系统开发:从架构设计到裂变增长的完整解决方案
在移动互联网营销竞争白热化的当下,推客小程序系统凭借其裂变传播、精准营销等特性,成为企业抢占市场的利器。本文将深度解析推客小程序系统开发的核心技术与实现路径,助力开发者打造具有市场竞争力的营销工具。 一、系统核心功能架构&…...