当前位置: 首页 > news >正文

《程序员面试金典(第6版)》 面试题 08.11. 硬币(动态规划,组合问题,C++)

题目描述

硬币。给定数量不限的硬币,币值为25分、10分、5分和1分,编写代码计算n分有几种表示法。(结果可能会很大,你需要将结果模上1000000007)

示例1:

  • 输入: n = 5
    输出:2
    解释: 有两种方式可以凑成总金额:
    5=5
    5=1+1+1+1+1

示例2:

  • 输入: n = 10
    输出:4
    解释: 有四种方式可以凑成总金额:
    10=10
    10=5+5
    10=5+1+1+1+1+1
    10=1+1+1+1+1+1+1+1+1+1

说明:

  • 你可以假设:0 <= n (总金额) <= 1000000

解题思路与代码

这道题我拿到手上,就有了一种拿动态规划去解决它的冲动。所以让我们来看看这道题拿动态规划怎么去解决。

方法一 :动态规划

第一步,拿到这道题,先分析dp数组的下标以及含义是什么?

  • 定义一个一维数组dp,其中dp[i]表示组成金额n的钱的不同表示方法的数量。

第二步,去确定状态转移方程式什么?

  • 对于每一个币值(1,5,10,25),依次当前硬币的价值处开始遍历直到最大金额n处停止,一共有多少种方法,那么对于当前金额j,可以得出递推公式:
    • dp[j] = (dp[j] + dp[j - 当前币值]) % 1000000007

第三步,去初始化dp数组

  • 由于下一步的结果永远都是由上一步所去推出来的,所以我们要直到第一步的数值是多少,才好去做下面的推导
  • 我们要将初始化dp[0]为1,因为有一种表示方法是使用0个硬币组成0分。其余元素初始化为0。

第四步,确定如何遍历dp数组。

  • 我们要用一个双层的for循环去遍历这个dp数组,这是因为,我们一共有4种硬币的面值。所以我们要一次选择每一种面值的数额去作为其实遍历的点,直到达到题目要求的n时停止。
  • 那么代码大概就是这样:
	for(int& coin : coins)for(int i = coin; i < n+1; ++i)dp[i] = (dp[i] + dp[i - coin])%MOD;

第五步,举例推导dp数组

  • 这一步自己在纸上画一画就好了

具体的解决代码如下:

class Solution {
public:int waysToChange(int n) {int MOD = 1000000007;vector<int> dp(n+1);vector<int> coins{1,5,10,25};dp[0] = 1;for(int& coin : coins)for(int i = coin; i < n+1; ++i)dp[i] = (dp[i] + dp[i - coin])%MOD;return dp[n];}
};

在这里插入图片描述

复杂度分析

时间复杂度:O(n),其中n为输入金额。这是因为代码中有两层循环,第一层循环遍历硬币,它是一个常数4(币值:1, 5, 10, 25),第二层循环遍历所有金额,从硬币面值到n。因此,总时间复杂度是O(4n),可以简化为O(n)。

空间复杂度:O(n),其中n为输入金额。代码中主要的空间消耗来自dp数组,它的大小为n + 1。因此,空间复杂度为O(n)。

总结

这道题是动态规划里的一道组合类问题。我尝试着把这道题往0-1背包去靠,结果有点费劲。不如就像我这么去解释。

不要硬生生的划分给0-1背包,这就是一道动态规划的组合问题而已。

难度确实始终,也很好理解。但你要往0-1背包去靠,那就很难理解了。我个人感觉。

相关文章:

《程序员面试金典(第6版)》 面试题 08.11. 硬币(动态规划,组合问题,C++)

题目描述 硬币。给定数量不限的硬币&#xff0c;币值为25分、10分、5分和1分&#xff0c;编写代码计算n分有几种表示法。(结果可能会很大&#xff0c;你需要将结果模上1000000007) 示例1: 输入: n 5 输出&#xff1a;2 解释: 有两种方式可以凑成总金额: 55 511111 示例2: 输…...

实体商家做抖音运营如何做矩阵?

商家实体门店如何做好短视频矩阵&#xff1f;这是一个值得深入探讨的问题。在当今的数字化时代&#xff0c;短视频成为越来越多企业吸引用户、提高曝光度的一种重要方式&#xff0c;实体店也不例外。在本文中&#xff0c;我们将提供一些实用的建议&#xff0c;帮助实体店如何做…...

java 双列集合Map 万字详解

目录 一、前言 二、概述 三、特点 四、常用方法 1. V put(K key, V value) : Δ代码演示 : 2. V get(Object key) : Δ代码演示 : 3. V remove(Object key) : Δ代码演示 : 4. int size() : Δ代码演示 : 5. default V replace(K key, V value) : Δ代码演示 : 6. bo…...

【数据结构】二叉树<遍历>

【二叉树遍历】|-前序-中序-后序-层序-|<二叉树的遍历>1.前序遍历【递归】2.中序遍历【递归】3.后序遍历【递归】4.层序遍历【非递归】4.1判断是否是完全二叉树<二叉树的遍历> 在学习二叉树遍历之前我们先了解下二叉树的概念。 二叉树是&#xff1a; 1.空树 2.非空…...

linux查看硬件信息

dmidecode用于在linux下获取硬件信息&#xff0c;遵循SMBIOS/DMI标准&#xff0c;可获取包括BIOS、系统、主板、处理器、内存、缓存等等硬件信息 1、查看CPU信息cat /proc/cpuinfo、lscpu 型号&#xff1a;cat /proc/cpuinfo|grep name|cut -f2 -d:|uniq -c 物理核&#xff1a…...

吐血整理,互联网大厂最常见的 1120 道 Java 面试题(带答案)整理

前言 作为一个 Java 程序员&#xff0c;你平时总是陷在业务开发里&#xff0c;每天噼里啪啦忙敲着代码&#xff0c;上到系统开发&#xff0c;下到 Bug 修改&#xff0c;你感觉自己无所不能。然而偶尔的一次聚会&#xff0c;你听说和自己一起出道的同学早已经年薪 50 万&#x…...

RabbitMQ如何避免消息丢失

目录1.生产者没有成功把消息发送到MQ2.RabbitMQ接收到消息之后丢失了消息3.消费者弄丢了消息前言 首先明确一点一条消息的传送流程&#xff1a;生产者->MQ->消费者 我们根据这三个依次讨论 1.生产者没有成功把消息发送到MQ 丢失的原因&#xff1a;因为网络传输的不稳定…...

做算法题的正确姿势(不断更新)

不停的反思自己&#xff0c;总结建议 做一道算法题&#xff0c;不能去死磕。 如果看一道题&#xff0c;半小时内&#xff0c;没有清晰的思路&#xff0c;就看题解&#xff01;&#xff01;&#xff01;你可能觉得你有点思路&#xff0c;就往里死钻&#xff0c;结果可能就像进…...

p85 CTF夺旗-JAVA考点反编译XXE反序列化

数据来源 图片来源 Java 常考点及出题思路 考点技术&#xff1a;xxe&#xff0c;spel 表达式&#xff0c;反序列化&#xff0c;文件安全&#xff0c;最新框架插件漏洞等 设法间接给出源码或相关配置提示文件&#xff0c;间接性源码或直接源码体现等形式 https://www.cnblog…...

FastJson——JSO字符串与对象的相互转化

一、FastJson介绍 ​ Fastjson是阿里巴巴的开源SON解析库它可以解析JSON格式的字符串&#xff0c;支持将java Bean序列化为ISON字符串&#xff0c;也可以从JSON字符串反序列化到JavaBean。 Fastjson的优点 速度快 fastjson相对其他JSON库的特点是快&#xff0c;从2011年fastj…...

《程序员面试金典(第6版)》面试题 08.08. 有重复字符串的排列组合(回溯算法,全排列问题)C++

题目描述 有重复字符串的排列组合。编写一种方法&#xff0c;计算某字符串的所有排列组合。 示例1: 输入&#xff1a;S “qqe” 输出&#xff1a;[“eqq”,“qeq”,“qqe”] 示例2: 输入&#xff1a;S “ab” 输出&#xff1a;[“ab”, “ba”] 提示: 字符都是英文字母。…...

k8s API限流——server级别整体限流和客户端限流

1. 背景 为了防止突发流量影响apiserver可用性&#xff0c;k8s支持多种限流配置&#xff0c;包括&#xff1a; MaxInFlightLimit&#xff0c;server级别整体限流Client限流EventRateLimit, 限制eventAPF&#xff0c;更细力度的限制配置 1.1 MaxInFlightLimit限流 apiserver…...

在华为做了三年软件测试被裁了,我该怎么办

近年来&#xff0c;随着经济环境的变化和企业战略的调整&#xff0c;员工被裁员的情况变得越来越普遍。无论是因为企业经营困难还是因为业务调整&#xff0c;员工们都可能面临被裁员的风险。如果你也遇到了这样的情况&#xff0c;那么你应该怎么办呢&#xff1f; 首先&#xf…...

Spring cloud 限流的多种方式

在频繁的网络请求时&#xff0c;服务有时候也会受到很大的压力&#xff0c;尤其是那种网络攻击&#xff0c;非法的。这样的情形有时候需要作一些限制。本文主要介绍了两种限流方法&#xff0c;感兴趣的可以了解一下 目录 一、实战基于 Spring cloud Gateway 的限流 二、基于阿…...

Linux命令·top

top命令是Linux下常用的性能分析工具&#xff0c;能够实时显示系统中各个进程的资源占用状况&#xff0c;类似于Windows的任务管理器。下面详细介绍它的使用方法。top是一个动态显示过程,即可以通过用户按键来不断刷新当前状态.如果在前台执行该命令,它将独占前台,直到用户终止…...

springmvc之系列文章

springmvc之编程步骤 springmvc初始化过程 用WebServlet和WebFilter干掉web.xml 没有web.xml怎么写web程序 一次GET请求在springmvc中是的处理流程 springMVC的handler都有哪些类型 springmvc主要组件简单介绍 springmvc 的Servlet WebApplicationContext springmvc 的…...

Matlab实现深度学习(附上完整仿真源码)

文章目录简单案例完整仿真代码下载简单案例 深度学习是一种能够自动学习和提取数据特征的机器学习方法&#xff0c;它已经在图像识别、语音识别、自然语言处理等领域取得了显著的成果。而Matlab作为一个强大的数学计算工具&#xff0c;也提供了丰富的深度学习工具箱&#xff0…...

我的谷歌书签

Form 表单 | Element Plusa Vue 3 based component library for designers and developershttps://element-plus.gitee.io/zh-CN/component/form.html#%E5%AF%B9%E9%BD%90%E6%96%B9%E5%BC%8F three.js exampleshttp://www.yanhuangxueyuan.com/threejs/examples/#software_geo…...

day3 数据库技术考点汇总

一、重点知识点 基本概念&#xff1a;三级模式-两级映像、数据库设计数据库模型&#xff1a;E-R模型、关系模型、关系代数&#xff08;结合SQL语言&#xff09;规范化&#xff1a;函数依赖、健与约束、范式、模式分解事务并发&#xff1a;并发三种问题、三级封锁协议数据库新技…...

学剪辑难吗 如何使用会声会影2023做剪辑视频

很多剪辑初学者都问过一个问题&#xff0c;学剪辑难吗&#xff1f;其实不论学什么&#xff0c;只要用心学都不难&#xff0c;今天我们就来讲讲如何学做剪辑视频&#xff0c;感兴趣的小伙伴们不要走开&#xff01;一、学剪辑难吗 其实学剪辑并不是件难事&#xff0c;但是需要掌握…...

零门槛NAS搭建:WinNAS如何让普通电脑秒变私有云?

一、核心优势&#xff1a;专为Windows用户设计的极简NAS WinNAS由深圳耘想存储科技开发&#xff0c;是一款收费低廉但功能全面的Windows NAS工具&#xff0c;主打“无学习成本部署” 。与其他NAS软件相比&#xff0c;其优势在于&#xff1a; 无需硬件改造&#xff1a;将任意W…...

7.4.分块查找

一.分块查找的算法思想&#xff1a; 1.实例&#xff1a; 以上述图片的顺序表为例&#xff0c; 该顺序表的数据元素从整体来看是乱序的&#xff0c;但如果把这些数据元素分成一块一块的小区间&#xff0c; 第一个区间[0,1]索引上的数据元素都是小于等于10的&#xff0c; 第二…...

CTF show Web 红包题第六弹

提示 1.不是SQL注入 2.需要找关键源码 思路 进入页面发现是一个登录框&#xff0c;很难让人不联想到SQL注入&#xff0c;但提示都说了不是SQL注入&#xff0c;所以就不往这方面想了 ​ 先查看一下网页源码&#xff0c;发现一段JavaScript代码&#xff0c;有一个关键类ctfs…...

DockerHub与私有镜像仓库在容器化中的应用与管理

哈喽&#xff0c;大家好&#xff0c;我是左手python&#xff01; Docker Hub的应用与管理 Docker Hub的基本概念与使用方法 Docker Hub是Docker官方提供的一个公共镜像仓库&#xff0c;用户可以在其中找到各种操作系统、软件和应用的镜像。开发者可以通过Docker Hub轻松获取所…...

蓝桥杯3498 01串的熵

问题描述 对于一个长度为 23333333的 01 串, 如果其信息熵为 11625907.5798&#xff0c; 且 0 出现次数比 1 少, 那么这个 01 串中 0 出现了多少次? #include<iostream> #include<cmath> using namespace std;int n 23333333;int main() {//枚举 0 出现的次数//因…...

面向无人机海岸带生态系统监测的语义分割基准数据集

描述&#xff1a;海岸带生态系统的监测是维护生态平衡和可持续发展的重要任务。语义分割技术在遥感影像中的应用为海岸带生态系统的精准监测提供了有效手段。然而&#xff0c;目前该领域仍面临一个挑战&#xff0c;即缺乏公开的专门面向海岸带生态系统的语义分割基准数据集。受…...

【Elasticsearch】Elasticsearch 在大数据生态圈的地位 实践经验

Elasticsearch 在大数据生态圈的地位 & 实践经验 1.Elasticsearch 的优势1.1 Elasticsearch 解决的核心问题1.1.1 传统方案的短板1.1.2 Elasticsearch 的解决方案 1.2 与大数据组件的对比优势1.3 关键优势技术支撑1.4 Elasticsearch 的竞品1.4.1 全文搜索领域1.4.2 日志分析…...

Spring Security 认证流程——补充

一、认证流程概述 Spring Security 的认证流程基于 过滤器链&#xff08;Filter Chain&#xff09;&#xff0c;核心组件包括 UsernamePasswordAuthenticationFilter、AuthenticationManager、UserDetailsService 等。整个流程可分为以下步骤&#xff1a; 用户提交登录请求拦…...

AD学习(3)

1 PCB封装元素组成及简单的PCB封装创建 封装的组成部分&#xff1a; &#xff08;1&#xff09;PCB焊盘&#xff1a;表层的铜 &#xff0c;top层的铜 &#xff08;2&#xff09;管脚序号&#xff1a;用来关联原理图中的管脚的序号&#xff0c;原理图的序号需要和PCB封装一一…...

用神经网络读懂你的“心情”:揭秘情绪识别系统背后的AI魔法

用神经网络读懂你的“心情”:揭秘情绪识别系统背后的AI魔法 大家好,我是Echo_Wish。最近刷短视频、看直播,有没有发现,越来越多的应用都开始“懂你”了——它们能感知你的情绪,推荐更合适的内容,甚至帮客服识别用户情绪,提升服务体验。这背后,神经网络在悄悄发力,撑起…...