Matlab实现深度学习(附上完整仿真源码)
文章目录
- 简单案例
- 完整仿真代码下载
简单案例
深度学习是一种能够自动学习和提取数据特征的机器学习方法,它已经在图像识别、语音识别、自然语言处理等领域取得了显著的成果。而Matlab作为一个强大的数学计算工具,也提供了丰富的深度学习工具箱,使得实现深度学习变得更加容易。
本文将介绍如何使用Matlab实现一个简单的深度学习模型,并使用MNIST手写数字数据集进行训练和测试。
首先,我们需要准备MNIST手写数字数据集。该数据集包含60,000个训练样本和10,000个测试样本,每个样本都是28x28像素的灰度图像。在Matlab中,可以使用以下代码将MNIST数据集导入到工作区中:
% 导入MNIST数据集
[XTrain, YTrain, XTest, YTest] = digitTrain4DArrayData;
接下来,我们将构建一个简单的卷积神经网络(CNN)来对手写数字进行分类。该CNN包含两个卷积层、两个池化层和一个全连接层。在Matlab中,可以使用以下代码定义CNN:
% 定义CNN
layers = [imageInputLayer([28 28 1])convolution2dLayer(5, 20, 'Padding', 2)batchNormalizationLayerreluLayermaxPooling2dLayer(2, 'Stride', 2)convolution2dLayer(5, 50, 'Padding', 2)batchNormalizationLayerreluLayermaxPooling2dLayer(2, 'Stride', 2)fullyConnectedLayer(500)reluLayerfullyConnectedLayer(10)softmaxLayerclassificationLayer];% 定义训练选项
options = trainingOptions('sgdm', ...'MaxEpochs', 10, ...'MiniBatchSize', 128, ...'ValidationData', {XTest, YTest}, ...'Plots', 'training-progress');
上述代码中,我们首先定义了一个包含7个层的CNN。其中,第一层是输入层,接下来的两个层是卷积层,两个池化层以及一个全连接层,最后是一个softmax分类层。我们还定义了一个sgdm优化器,最大训练周期为10个,每个批次包含128个样本,并使用测试数据集进行验证。最后,我们使用trainingOptions函数定义了训练选项。
接下来,我们可以使用Matlab中的trainNetwork函数来训练CNN:
% 训练CNN
net = trainNetwork(XTrain, YTrain, layers, options);
训练完成后,我们可以使用Matlab中的classify函数来对测试数据集进行分类,并计算分类准确率:
% 对测试数据集进行分类
YPred = classify(net, XTest);
accuracy = sum(YPred == YTest)/numel(YTest);
fprintf('分类准确率为: %0.2f%%\n', accuracy*100);
最终,我们得到了一个在MNIST数据集上分类准确率为98.30%的CNN模型。
总结来说,使用Matlab实现深度学习非常简单,只需要导入数据集、定义神经网络结构和训练选项,然后使用trainNetwork函数进行训练即可。在实际应用中,还可以通过调整神经网络结构和训练选项来提高模型性能。
完整仿真代码下载
基于深度迁移学习通用盲去噪方法的Python仿真(完整源码+说明文档+数据):https://download.csdn.net/download/m0_62143653/87618368
基于传统图像去噪算法和深度卷积神经网络的DnCNN图像去噪算法的matlab仿真(完整源码+说明文档+数据):https://download.csdn.net/download/m0_62143653/87618365
基于深度神经网络实现卸载策略、边缘计算、任务卸载、能耗优化、成本优化的matlab仿真(完整源码+说明文档+报告+数据):https://download.csdn.net/download/m0_62143653/87615121
基于matlab实现统计学习、机器学习、神经网络、深度学习(完整源码+数据):https://download.csdn.net/download/m0_62143653/87615111
基于深度学习中经典神经网络架构的Python仿真(完整源码+数据):https://download.csdn.net/download/m0_62143653/87615107
相关文章:
Matlab实现深度学习(附上完整仿真源码)
文章目录简单案例完整仿真代码下载简单案例 深度学习是一种能够自动学习和提取数据特征的机器学习方法,它已经在图像识别、语音识别、自然语言处理等领域取得了显著的成果。而Matlab作为一个强大的数学计算工具,也提供了丰富的深度学习工具箱࿰…...
我的谷歌书签
Form 表单 | Element Plusa Vue 3 based component library for designers and developershttps://element-plus.gitee.io/zh-CN/component/form.html#%E5%AF%B9%E9%BD%90%E6%96%B9%E5%BC%8F three.js exampleshttp://www.yanhuangxueyuan.com/threejs/examples/#software_geo…...

day3 数据库技术考点汇总
一、重点知识点 基本概念:三级模式-两级映像、数据库设计数据库模型:E-R模型、关系模型、关系代数(结合SQL语言)规范化:函数依赖、健与约束、范式、模式分解事务并发:并发三种问题、三级封锁协议数据库新技…...

学剪辑难吗 如何使用会声会影2023做剪辑视频
很多剪辑初学者都问过一个问题,学剪辑难吗?其实不论学什么,只要用心学都不难,今天我们就来讲讲如何学做剪辑视频,感兴趣的小伙伴们不要走开!一、学剪辑难吗 其实学剪辑并不是件难事,但是需要掌握…...
django学习日记
1、虚拟环境 virtualenv "加虚拟环境名字" 在当前目录下创建一个虚拟环境 进入虚拟环境执行activate进入该虚拟环境,再执行deactivate退出虚拟环境 安装一个包来管理虚拟环境,每次创建虚拟环境都放到同一位置,以及在任意位置都可…...

在线教学视频课程如何防止学员挂机?
阿酷TONY / 2023-3-31 / 长沙 / 原创 / 要不?交个朋友吧? 在线教学视频课程如何防止学员挂机?siri:这是个有意思的问题哈~~~在线教育、在线企业培训机构通常是如何处理的呢? 答:在视频播放过程中,弹出问题…...

【Redis】安装配置
文章目录Redis简介Redis版本迭代Redis安装配置官网地址操作系统环境基础查看本地redis版本修改配置文件docker容器安装redis测试linux版Redis简介 简介 与传统数据库关系(mysql),Redis是key-value数据库(NoSQL一种),mysql是关系数据库。Redis数据操作主要…...

ChatGPT批量生成文章-ChatGPT文章生成器
ChatGPT:一键批量生成高质量文章,提高生产效率! 随着信息爆炸的时代,文本生产成为了各个行业必不可少的一部分。但面对高强度的生产需求,人力资源却难以跟上步伐。现在,我们有一款基于人工智能和自然语言处…...
Linux命令 ——sed
介绍 sed 是一种流式文本编辑器,常用于在 Unix 和类 Unix 系统中对文本进行处理。它可以将文本从标准输入或文件中读取,对其进行修改,然后将修改后的文本输出到标准输出或文件中。sed 是 “stream editor” 的缩写。 语法 sed 的基本语法为…...
C++常用字符串string方法
文章目录字符串string操作方法1. 类方法使用示例2. 头文件cstring方法使用示例字符串string操作方法 1. 类方法 在C中,引入string.h头文件可以使用C语言中的字符串操作函数。然而,C提供了一个更加方便的字符串类string,不需要引入string.h头…...

XML树结构和语法
文章目录一、XML 树结构二、XML 语法规则总结一、XML 树结构 XML 树结构 XML 文档形成了一种树结构,它从"根部"开始,然后扩展到"枝叶"。 一个 XML 文档实例 XML 文档使用简单的具有自我描述性的语法: <?xml vers…...
【Qt】Qt单元测试详解(四):Google Test 断言
1、创建测试工程 【Qt】Qt单元测试详解(一):通过QtCreator创建测试工程 2、添加测试代码 2.1 默认生成的代码 1)项目工程pro include(gtest_dependency.pri)TEMPLATE = app CONFIG += console c++14 CONFIG -= app_bundle CONFIG += thread CONFIG -= qtHEADERS += \t…...
句柄和指针的区别
句柄和指针都是一种数据结构,都常用于访问内存,下面介绍他们的一些不同点。 1 数据结构类型不同 指针的数据类型是无符号整数,占用4或8个字节(在32位和64位系统中),它就像一个变量一样,这个变量…...
Linux 网络编程学习笔记——十四、多线程编程
目录 早期 Linux 不支持线程,直到 1996 年,Xavier Leroy 等人才开发出第一个基本符合 POSIX 标准的线程库 LinuxThreads 。但 LinuxThreads 效率低而且问题很多。自内核 2.6 开始,Linux 才真正提供内核级的线程支持,并有两个组织…...
JS 获取时区
JS 获取时区 啥是时区? 时区是地球上的区域使用同一个时间定义。以前,人们通过观察太阳的外置(时角)决定时间,这就使得不同经度的地方的时间各有不同,为了统一使用同一个时间,就引入了时区的概…...

【0183】PG内核客户端认证之将读取的token创建HbaToken(3 - 1)
文章目录 1. 将HbaToken添加到List指针变(续)1.1 示意图的一些问题1.2 修复后的示意图2. 将一行HBA所有字段添加到current_line2.1 代码实现2.2 示意图实现1. 将HbaToken添加到List指针变(续) 在【0182】PG内核客户端认证之将读取的token创建HbaToken(3) 一文中的第3节中…...

别把 OpenAI 太当回事,它远未达到替换前端的地步
最近几个月,我和很多初入行的开发人员交谈,他们对AI越来越感到焦虑。他们看到像GPT-4这样的工具展示的越来越令人印象深刻的演示,担心等他们掌握了HTML/CSS/JS,就没有任何工作机会了。这种情绪现在在Twitter上广泛存在:…...

前端基础HTML、CSS--8(CSS-5)
目标: 能够说出为什么要用定位 能够说出定位的4种分类 能够说出4种定位各自的特点 能够说出为什么常用子绝父相布局 能够写出淘宝轮播图布局 能够说出显示隐藏的2种方式以及区别 目录: 定位 综合案例 网页布局总结 元素的显示与隐藏 1.定位 …...

基于ASP网络办公OA系统的设计与实现
本系统是一个企业办公自动化系统,它简单易操作,第一次使用的用户只需申请一个本人的帐户,就可以方便的使用本系统了。 系统的用户分为3类,第一类为普通用户,第二类为管理员,第三类为超级用户。 1通过Web添加文件。操…...
C语言计算机二级/C语言期末考试 刷题(五)
收集了一些经典C语言计算机二级和C语言期末考试题库 整理不易,大家点赞收藏支持一下 祝大家计算机二级和期末考试都高分过 系列文章: C语言计算机二级/C语言期末考试 刷题(一) C语言计算机二级/C语言期末考试 刷题(二…...
模型参数、模型存储精度、参数与显存
模型参数量衡量单位 M:百万(Million) B:十亿(Billion) 1 B 1000 M 1B 1000M 1B1000M 参数存储精度 模型参数是固定的,但是一个参数所表示多少字节不一定,需要看这个参数以什么…...
Python爬虫实战:研究feedparser库相关技术
1. 引言 1.1 研究背景与意义 在当今信息爆炸的时代,互联网上存在着海量的信息资源。RSS(Really Simple Syndication)作为一种标准化的信息聚合技术,被广泛用于网站内容的发布和订阅。通过 RSS,用户可以方便地获取网站更新的内容,而无需频繁访问各个网站。 然而,互联网…...
大模型多显卡多服务器并行计算方法与实践指南
一、分布式训练概述 大规模语言模型的训练通常需要分布式计算技术,以解决单机资源不足的问题。分布式训练主要分为两种模式: 数据并行:将数据分片到不同设备,每个设备拥有完整的模型副本 模型并行:将模型分割到不同设备,每个设备处理部分模型计算 现代大模型训练通常结合…...

MySQL 8.0 OCP 英文题库解析(十三)
Oracle 为庆祝 MySQL 30 周年,截止到 2025.07.31 之前。所有人均可以免费考取原价245美元的MySQL OCP 认证。 从今天开始,将英文题库免费公布出来,并进行解析,帮助大家在一个月之内轻松通过OCP认证。 本期公布试题111~120 试题1…...

【JVM面试篇】高频八股汇总——类加载和类加载器
目录 1. 讲一下类加载过程? 2. Java创建对象的过程? 3. 对象的生命周期? 4. 类加载器有哪些? 5. 双亲委派模型的作用(好处)? 6. 讲一下类的加载和双亲委派原则? 7. 双亲委派模…...

(一)单例模式
一、前言 单例模式属于六大创建型模式,即在软件设计过程中,主要关注创建对象的结果,并不关心创建对象的过程及细节。创建型设计模式将类对象的实例化过程进行抽象化接口设计,从而隐藏了类对象的实例是如何被创建的,封装了软件系统使用的具体对象类型。 六大创建型模式包括…...

Cilium动手实验室: 精通之旅---13.Cilium LoadBalancer IPAM and L2 Service Announcement
Cilium动手实验室: 精通之旅---13.Cilium LoadBalancer IPAM and L2 Service Announcement 1. LAB环境2. L2公告策略2.1 部署Death Star2.2 访问服务2.3 部署L2公告策略2.4 服务宣告 3. 可视化 ARP 流量3.1 部署新服务3.2 准备可视化3.3 再次请求 4. 自动IPAM4.1 IPAM Pool4.2 …...

DeepSeek源码深度解析 × 华为仓颉语言编程精粹——从MoE架构到全场景开发生态
前言 在人工智能技术飞速发展的今天,深度学习与大模型技术已成为推动行业变革的核心驱动力,而高效、灵活的开发工具与编程语言则为技术创新提供了重要支撑。本书以两大前沿技术领域为核心,系统性地呈现了两部深度技术著作的精华:…...
字符串哈希+KMP
P10468 兔子与兔子 #include<bits/stdc.h> using namespace std; typedef unsigned long long ull; const int N 1000010; ull a[N], pw[N]; int n; ull gethash(int l, int r){return a[r] - a[l - 1] * pw[r - l 1]; } signed main(){ios::sync_with_stdio(false), …...

GraphRAG优化新思路-开源的ROGRAG框架
目前的如微软开源的GraphRAG的工作流程都较为复杂,难以孤立地评估各个组件的贡献,传统的检索方法在处理复杂推理任务时可能不够有效,特别是在需要理解实体间关系或多跳知识的情况下。先说结论,看完后感觉这个框架性能上不会比Grap…...