当前位置: 首页 > news >正文

Matlab实现深度学习(附上完整仿真源码)

文章目录

  • 简单案例
  • 完整仿真代码下载

简单案例

深度学习是一种能够自动学习和提取数据特征的机器学习方法,它已经在图像识别、语音识别、自然语言处理等领域取得了显著的成果。而Matlab作为一个强大的数学计算工具,也提供了丰富的深度学习工具箱,使得实现深度学习变得更加容易。

本文将介绍如何使用Matlab实现一个简单的深度学习模型,并使用MNIST手写数字数据集进行训练和测试。

首先,我们需要准备MNIST手写数字数据集。该数据集包含60,000个训练样本和10,000个测试样本,每个样本都是28x28像素的灰度图像。在Matlab中,可以使用以下代码将MNIST数据集导入到工作区中:

% 导入MNIST数据集
[XTrain, YTrain, XTest, YTest] = digitTrain4DArrayData;

接下来,我们将构建一个简单的卷积神经网络(CNN)来对手写数字进行分类。该CNN包含两个卷积层、两个池化层和一个全连接层。在Matlab中,可以使用以下代码定义CNN:

% 定义CNN
layers = [imageInputLayer([28 28 1])convolution2dLayer(5, 20, 'Padding', 2)batchNormalizationLayerreluLayermaxPooling2dLayer(2, 'Stride', 2)convolution2dLayer(5, 50, 'Padding', 2)batchNormalizationLayerreluLayermaxPooling2dLayer(2, 'Stride', 2)fullyConnectedLayer(500)reluLayerfullyConnectedLayer(10)softmaxLayerclassificationLayer];% 定义训练选项
options = trainingOptions('sgdm', ...'MaxEpochs', 10, ...'MiniBatchSize', 128, ...'ValidationData', {XTest, YTest}, ...'Plots', 'training-progress');

上述代码中,我们首先定义了一个包含7个层的CNN。其中,第一层是输入层,接下来的两个层是卷积层,两个池化层以及一个全连接层,最后是一个softmax分类层。我们还定义了一个sgdm优化器,最大训练周期为10个,每个批次包含128个样本,并使用测试数据集进行验证。最后,我们使用trainingOptions函数定义了训练选项。

接下来,我们可以使用Matlab中的trainNetwork函数来训练CNN:

% 训练CNN
net = trainNetwork(XTrain, YTrain, layers, options);

训练完成后,我们可以使用Matlab中的classify函数来对测试数据集进行分类,并计算分类准确率:

% 对测试数据集进行分类
YPred = classify(net, XTest);
accuracy = sum(YPred == YTest)/numel(YTest);
fprintf('分类准确率为: %0.2f%%\n', accuracy*100);

最终,我们得到了一个在MNIST数据集上分类准确率为98.30%的CNN模型。

总结来说,使用Matlab实现深度学习非常简单,只需要导入数据集、定义神经网络结构和训练选项,然后使用trainNetwork函数进行训练即可。在实际应用中,还可以通过调整神经网络结构和训练选项来提高模型性能。

完整仿真代码下载

基于深度迁移学习通用盲去噪方法的Python仿真(完整源码+说明文档+数据):https://download.csdn.net/download/m0_62143653/87618368

基于传统图像去噪算法和深度卷积神经网络的DnCNN图像去噪算法的matlab仿真(完整源码+说明文档+数据):https://download.csdn.net/download/m0_62143653/87618365

基于深度神经网络实现卸载策略、边缘计算、任务卸载、能耗优化、成本优化的matlab仿真(完整源码+说明文档+报告+数据):https://download.csdn.net/download/m0_62143653/87615121

基于matlab实现统计学习、机器学习、神经网络、深度学习(完整源码+数据):https://download.csdn.net/download/m0_62143653/87615111

基于深度学习中经典神经网络架构的Python仿真(完整源码+数据):https://download.csdn.net/download/m0_62143653/87615107

相关文章:

Matlab实现深度学习(附上完整仿真源码)

文章目录简单案例完整仿真代码下载简单案例 深度学习是一种能够自动学习和提取数据特征的机器学习方法,它已经在图像识别、语音识别、自然语言处理等领域取得了显著的成果。而Matlab作为一个强大的数学计算工具,也提供了丰富的深度学习工具箱&#xff0…...

我的谷歌书签

Form 表单 | Element Plusa Vue 3 based component library for designers and developershttps://element-plus.gitee.io/zh-CN/component/form.html#%E5%AF%B9%E9%BD%90%E6%96%B9%E5%BC%8F three.js exampleshttp://www.yanhuangxueyuan.com/threejs/examples/#software_geo…...

day3 数据库技术考点汇总

一、重点知识点 基本概念:三级模式-两级映像、数据库设计数据库模型:E-R模型、关系模型、关系代数(结合SQL语言)规范化:函数依赖、健与约束、范式、模式分解事务并发:并发三种问题、三级封锁协议数据库新技…...

学剪辑难吗 如何使用会声会影2023做剪辑视频

很多剪辑初学者都问过一个问题,学剪辑难吗?其实不论学什么,只要用心学都不难,今天我们就来讲讲如何学做剪辑视频,感兴趣的小伙伴们不要走开!一、学剪辑难吗 其实学剪辑并不是件难事,但是需要掌握…...

django学习日记

1、虚拟环境 virtualenv "加虚拟环境名字" 在当前目录下创建一个虚拟环境 进入虚拟环境执行activate进入该虚拟环境,再执行deactivate退出虚拟环境 安装一个包来管理虚拟环境,每次创建虚拟环境都放到同一位置,以及在任意位置都可…...

在线教学视频课程如何防止学员挂机?

阿酷TONY / 2023-3-31 / 长沙 / 原创 / 要不?交个朋友吧? 在线教学视频课程如何防止学员挂机?siri:这是个有意思的问题哈~~~在线教育、在线企业培训机构通常是如何处理的呢? 答:在视频播放过程中,弹出问题…...

【Redis】安装配置

文章目录Redis简介Redis版本迭代Redis安装配置官网地址操作系统环境基础查看本地redis版本修改配置文件docker容器安装redis测试linux版Redis简介 简介 与传统数据库关系(mysql),Redis是key-value数据库(NoSQL一种),mysql是关系数据库。Redis数据操作主要…...

ChatGPT批量生成文章-ChatGPT文章生成器

ChatGPT:一键批量生成高质量文章,提高生产效率! 随着信息爆炸的时代,文本生产成为了各个行业必不可少的一部分。但面对高强度的生产需求,人力资源却难以跟上步伐。现在,我们有一款基于人工智能和自然语言处…...

Linux命令 ——sed

介绍 sed 是一种流式文本编辑器,常用于在 Unix 和类 Unix 系统中对文本进行处理。它可以将文本从标准输入或文件中读取,对其进行修改,然后将修改后的文本输出到标准输出或文件中。sed 是 “stream editor” 的缩写。 语法 sed 的基本语法为…...

C++常用字符串string方法

文章目录字符串string操作方法1. 类方法使用示例2. 头文件cstring方法使用示例字符串string操作方法 1. 类方法 在C中,引入string.h头文件可以使用C语言中的字符串操作函数。然而,C提供了一个更加方便的字符串类string,不需要引入string.h头…...

XML树结构和语法

文章目录一、XML 树结构二、XML 语法规则总结一、XML 树结构 XML 树结构 XML 文档形成了一种树结构&#xff0c;它从"根部"开始&#xff0c;然后扩展到"枝叶"。 一个 XML 文档实例 XML 文档使用简单的具有自我描述性的语法&#xff1a; <?xml vers…...

【Qt】Qt单元测试详解(四):Google Test 断言

1、创建测试工程 【Qt】Qt单元测试详解(一):通过QtCreator创建测试工程 2、添加测试代码 2.1 默认生成的代码 1)项目工程pro include(gtest_dependency.pri)TEMPLATE = app CONFIG += console c++14 CONFIG -= app_bundle CONFIG += thread CONFIG -= qtHEADERS += \t…...

句柄和指针的区别

句柄和指针都是一种数据结构&#xff0c;都常用于访问内存&#xff0c;下面介绍他们的一些不同点。 1 数据结构类型不同 指针的数据类型是无符号整数&#xff0c;占用4或8个字节&#xff08;在32位和64位系统中&#xff09;&#xff0c;它就像一个变量一样&#xff0c;这个变量…...

Linux 网络编程学习笔记——十四、多线程编程

目录 早期 Linux 不支持线程&#xff0c;直到 1996 年&#xff0c;Xavier Leroy 等人才开发出第一个基本符合 POSIX 标准的线程库 LinuxThreads 。但 LinuxThreads 效率低而且问题很多。自内核 2.6 开始&#xff0c;Linux 才真正提供内核级的线程支持&#xff0c;并有两个组织…...

JS 获取时区

JS 获取时区 啥是时区&#xff1f; 时区是地球上的区域使用同一个时间定义。以前&#xff0c;人们通过观察太阳的外置&#xff08;时角&#xff09;决定时间&#xff0c;这就使得不同经度的地方的时间各有不同&#xff0c;为了统一使用同一个时间&#xff0c;就引入了时区的概…...

【0183】PG内核客户端认证之将读取的token创建HbaToken(3 - 1)

文章目录 1. 将HbaToken添加到List指针变(续)1.1 示意图的一些问题1.2 修复后的示意图2. 将一行HBA所有字段添加到current_line2.1 代码实现2.2 示意图实现1. 将HbaToken添加到List指针变(续) 在【0182】PG内核客户端认证之将读取的token创建HbaToken(3) 一文中的第3节中…...

别把 OpenAI 太当回事,它远未达到替换前端的地步

最近几个月&#xff0c;我和很多初入行的开发人员交谈&#xff0c;他们对AI越来越感到焦虑。他们看到像GPT-4这样的工具展示的越来越令人印象深刻的演示&#xff0c;担心等他们掌握了HTML/CSS/JS&#xff0c;就没有任何工作机会了。这种情绪现在在Twitter上广泛存在&#xff1a…...

前端基础HTML、CSS--8(CSS-5)

目标&#xff1a; 能够说出为什么要用定位 能够说出定位的4种分类 能够说出4种定位各自的特点 能够说出为什么常用子绝父相布局 能够写出淘宝轮播图布局 能够说出显示隐藏的2种方式以及区别 目录&#xff1a; 定位 综合案例 网页布局总结 元素的显示与隐藏 1.定位 …...

基于ASP网络办公OA系统的设计与实现

本系统是一个企业办公自动化系统&#xff0c;它简单易操作&#xff0c;第一次使用的用户只需申请一个本人的帐户&#xff0c;就可以方便的使用本系统了。 系统的用户分为3类&#xff0c;第一类为普通用户,第二类为管理员&#xff0c;第三类为超级用户。 1通过Web添加文件。操…...

C语言计算机二级/C语言期末考试 刷题(五)

收集了一些经典C语言计算机二级和C语言期末考试题库 整理不易&#xff0c;大家点赞收藏支持一下 祝大家计算机二级和期末考试都高分过 系列文章&#xff1a; C语言计算机二级/C语言期末考试 刷题&#xff08;一&#xff09; C语言计算机二级/C语言期末考试 刷题&#xff08;二…...

React Native 开发环境搭建(全平台详解)

React Native 开发环境搭建&#xff08;全平台详解&#xff09; 在开始使用 React Native 开发移动应用之前&#xff0c;正确设置开发环境是至关重要的一步。本文将为你提供一份全面的指南&#xff0c;涵盖 macOS 和 Windows 平台的配置步骤&#xff0c;如何在 Android 和 iOS…...

三维GIS开发cesium智慧地铁教程(5)Cesium相机控制

一、环境搭建 <script src"../cesium1.99/Build/Cesium/Cesium.js"></script> <link rel"stylesheet" href"../cesium1.99/Build/Cesium/Widgets/widgets.css"> 关键配置点&#xff1a; 路径验证&#xff1a;确保相对路径.…...

解决本地部署 SmolVLM2 大语言模型运行 flash-attn 报错

出现的问题 安装 flash-attn 会一直卡在 build 那一步或者运行报错 解决办法 是因为你安装的 flash-attn 版本没有对应上&#xff0c;所以报错&#xff0c;到 https://github.com/Dao-AILab/flash-attention/releases 下载对应版本&#xff0c;cu、torch、cp 的版本一定要对…...

NLP学习路线图(二十三):长短期记忆网络(LSTM)

在自然语言处理(NLP)领域,我们时刻面临着处理序列数据的核心挑战。无论是理解句子的结构、分析文本的情感,还是实现语言的翻译,都需要模型能够捕捉词语之间依时序产生的复杂依赖关系。传统的神经网络结构在处理这种序列依赖时显得力不从心,而循环神经网络(RNN) 曾被视为…...

Spring数据访问模块设计

前面我们已经完成了IoC和web模块的设计&#xff0c;聪明的码友立马就知道了&#xff0c;该到数据访问模块了&#xff0c;要不就这俩玩个6啊&#xff0c;查库势在必行&#xff0c;至此&#xff0c;它来了。 一、核心设计理念 1、痛点在哪 应用离不开数据&#xff08;数据库、No…...

Reasoning over Uncertain Text by Generative Large Language Models

https://ojs.aaai.org/index.php/AAAI/article/view/34674/36829https://ojs.aaai.org/index.php/AAAI/article/view/34674/36829 1. 概述 文本中的不确定性在许多语境中传达,从日常对话到特定领域的文档(例如医学文档)(Heritage 2013;Landmark、Gulbrandsen 和 Svenevei…...

适应性Java用于现代 API:REST、GraphQL 和事件驱动

在快速发展的软件开发领域&#xff0c;REST、GraphQL 和事件驱动架构等新的 API 标准对于构建可扩展、高效的系统至关重要。Java 在现代 API 方面以其在企业应用中的稳定性而闻名&#xff0c;不断适应这些现代范式的需求。随着不断发展的生态系统&#xff0c;Java 在现代 API 方…...

破解路内监管盲区:免布线低位视频桩重塑停车管理新标准

城市路内停车管理常因行道树遮挡、高位设备盲区等问题&#xff0c;导致车牌识别率低、逃费率高&#xff0c;传统模式在复杂路段束手无策。免布线低位视频桩凭借超低视角部署与智能算法&#xff0c;正成为破局关键。该设备安装于车位侧方0.5-0.7米高度&#xff0c;直接规避树枝遮…...

跨平台商品数据接口的标准化与规范化发展路径:淘宝京东拼多多的最新实践

在电商行业蓬勃发展的当下&#xff0c;多平台运营已成为众多商家的必然选择。然而&#xff0c;不同电商平台在商品数据接口方面存在差异&#xff0c;导致商家在跨平台运营时面临诸多挑战&#xff0c;如数据对接困难、运营效率低下、用户体验不一致等。跨平台商品数据接口的标准…...

CppCon 2015 学习:REFLECTION TECHNIQUES IN C++

关于 Reflection&#xff08;反射&#xff09; 这个概念&#xff0c;总结一下&#xff1a; Reflection&#xff08;反射&#xff09;是什么&#xff1f; 反射是对类型的自我检查能力&#xff08;Introspection&#xff09; 可以查看类的成员变量、成员函数等信息。反射允许枚…...