深度学习-----------------机器翻译与数据集
目录
- 机器翻译与数据集
- 下载和预处理数据集
- 预处理步骤
- 词元化
- 词汇表
- 该部分总代码
- 固定长度阶段或填充
- 该部分总代码
- 转换成小批量数据集用于训练
- 训练模型
- 总代码
机器翻译与数据集
import os
import torch
from d2l import torch as d2l
下载和预处理数据集
#@save
d2l.DATA_HUB['fra-eng'] = (d2l.DATA_URL + 'fra-eng.zip','94646ad1522d915e7b0f9296181140edcf86a4f5')#@save
def read_data_nmt():"""载入“英语-法语”数据集"""data_dir = d2l.download_extract('fra-eng')with open(os.path.join(data_dir, 'fra.txt'), 'r',encoding='utf-8') as f:return f.read()raw_text = read_data_nmt()
print(raw_text[:75])

预处理步骤
import os
import torch
from d2l import torch as d2l# 下载和预处理数据集
# 将数据集的下载链接和校验码与'fra-eng'标识关联起来
d2l.DATA_HUB['fra-eng'] = (d2l.DATA_URL + 'fra-eng.zip','94646ad1522d915e7b0f9296181140edcf86a4f5')def read_data_nmt():"""载入 “英语-法语” 数据集 """# 下载并解压数据集data_dir = d2l.download_extract('fra-eng')# 读取数据并返回with open(os.path.join(data_dir, 'fra.txt'), 'r', encoding='utf-8') as f:return f.read()# 几个预处理步骤
def preprocess_nmt(text):"""预处理 “英语-法语” 数据集"""# 判断字符是否是特定标点符号并且前一个字符不是空格def no_space(char, prev_char):return char in set(',.!?') and prev_char != ' '# 替换特殊字符为空格,转换为小写text = text.replace('\u202f', ' ').replace('\xa0', ' ').lower()out = [# 对于每个字符,如果它的索引大于0(即不是第一个字符),并且满足 no_space 函数的条件,则在该字符前添加一个空格,否则,直接使用该字符。' ' + char if i > 0 and no_space(char, text[i - 1]) else char# (enumerate 函数将字符串 text 中的每个字符及其索引打包成元组i为下标、char为字符)for i, char in enumerate(text)]return ''.join(out) # 将处理后的字符列表转换为字符串# 调用函数读取数据集
raw_text = read_data_nmt()
# 调用预处理函数处理原始文本
text = preprocess_nmt(raw_text)
# 打印处理后的文本的前80个字符
print(text[:75])

词元化
import os
from d2l import torch as d2l# 下载和预处理数据集
# 将数据集的下载链接和校验码与'fra-eng'标识关联起来
d2l.DATA_HUB['fra-eng'] = (d2l.DATA_URL + 'fra-eng.zip','94646ad1522d915e7b0f9296181140edcf86a4f5')def read_data_nmt():"""载入 “英语-法语” 数据集 """# 下载并解压数据集data_dir = d2l.download_extract('fra-eng')# 读取数据并返回with open(os.path.join(data_dir, 'fra.txt'), 'r', encoding='utf-8') as f:return f.read()# 几个预处理步骤
def preprocess_nmt(text):"""预处理 “英语-法语” 数据集"""# 判断字符是否是特定标点符号并且前一个字符不是空格def no_space(char, prev_char):return char in set(',.!?') and prev_char != ' '# 替换特殊字符为空格,转换为小写text = text.replace('\u202f', ' ').replace('\xa0', ' ').lower()out = [# 对于每个字符,如果它的索引大于0(即不是第一个字符),并且满足 no_space 函数的条件,则在该字符前添加一个空格,否则,直接使用该字符。' ' + char if i > 0 and no_space(char, text[i - 1]) else char# (enumerate 函数将字符串 text 中的每个字符及其索引打包成元组i为下标、char为字符)for i, char in enumerate(text)]return ''.join(out) # 将处理后的字符列表转换为字符串# 指定处理的示例数量。如果为 None,则处理所有行。
def tokenize_nmt(text, num_examples=None):"""词元化 “英语-法语” 数据数据集 """# 存储英语和法语的词元序列source, target = [], []# 将每一行及其索引打包成元组 (i, line)for i, line in enumerate(text.split('\n')):# 如果指定了num_examples且当前行索引i大于num_examples,则结束循环if num_examples and i > num_examples:break# 按制表符分割行parts = line.split('\t')# 如果行中包含了两个部分if len(parts) == 2:# 将英语部分按空格分割为词元,并添加到source列表source.append(parts[0].split(' ')) # 英语# 将法语部分按空格分割为词元,并添加到target列表target.append(parts[1].split(' ')) # 法语return source, target# 调用函数读取数据集
raw_text = read_data_nmt()
# 调用预处理函数处理原始文本
text = preprocess_nmt(raw_text)# 调用函数词元化文本
source, target = tokenize_nmt(text)
# 打印source和target的前6个词元序列
print(source[:6])
print(target[:6])

绘制每个文本序列所包含的标记数量的直方图。
import os
import torch
from d2l import torch as d2l# 下载和预处理数据集
# 将数据集的下载链接和校验码与'fra-eng'标识关联起来
d2l.DATA_HUB['fra-eng'] = (d2l.DATA_URL + 'fra-eng.zip','94646ad1522d915e7b0f9296181140edcf86a4f5')def read_data_nmt():"""载入 “英语-法语” 数据集 """# 下载并解压数据集data_dir = d2l.download_extract('fra-eng')# 读取数据并返回with open(os.path.join(data_dir, 'fra.txt'), 'r', encoding='utf-8') as f:return f.read()# 几个预处理步骤
def preprocess_nmt(text):"""预处理 “英语-法语” 数据集"""# 判断字符是否是特定标点符号并且前一个字符不是空格def no_space(char, prev_char):return char in set(',.!?') and prev_char != ' '# 替换特殊字符为空格,转换为小写text = text.replace('\u202f', ' ').replace('\xa0', ' ').lower()out = [# 对于每个字符,如果它的索引大于0(即不是第一个字符),并且满足 no_space 函数的条件,则在该字符前添加一个空格,否则,直接使用该字符。' ' + char if i > 0 and no_space(char, text[i - 1]) else char# (enumerate 函数将字符串 text 中的每个字符及其索引打包成元组i为下标、char为字符)for i, char in enumerate(text)]return ''.join(out) # 将处理后的字符列表转换为字符串# 指定处理的示例数量。如果为 None,则处理所有行。
def tokenize_nmt(text, num_examples=None):"""词元化 “英语-法语” 数据数据集 """# 存储英语和法语的词元序列source, target = [], []# 将每一行及其索引打包成元组 (i, line)for i, line in enumerate(text.split('\n')):# 如果指定了num_examples且当前行索引i大于num_examples,则结束循环if num_examples and i > num_examples:break# 按制表符分割行parts = line.split('\t')# 如果行中包含了两个部分if len(parts) == 2:# 将英语部分按空格分割为词元,并添加到source列表source.append(parts[0].split(' ')) # 英语# 将法语部分按空格分割为词元,并添加到target列表target.append(parts[1].split(' ')) # 法语return source, target# 调用函数读取数据集
raw_text = read_data_nmt()
# 调用预处理函数处理原始文本
text = preprocess_nmt(raw_text)# 调用函数词元化文本
source, target = tokenize_nmt(text)
# 设置图形大小
d2l.set_figsize()
# 绘制每个文本序列所包含的标记数量的直方图,根据句子长度做的直方图
_, _, patches = d2l.plt.hist([[len(l)for l in source], [len(l) for l in target]],label = ['source','target']) # 添加标签
# 遍历第二个直方图的每个矩形
for patch in patches[1].patches:# 设置矩形的填充样式为斜线patch.set_hatch('/')
# 添加图例,位于右上角
d2l.plt.legend(loc='upper right')
d2l.plt.show()

词汇表
# 创建源语言的词汇表对象
src_vocab = d2l.Vocab(source, min_freq=2,reserved_tokens=['<pad>', '<bos>', '<eos>']) # pad表示句子的填充,bos 表示句子开始,eos表示句子结束,min_freq=2表示句子长度小于2个就不要了
# 计算词汇表的大小
print(len(src_vocab))

该部分总代码
import os
import torch
from d2l import torch as d2l# 下载和预处理数据集
# 将数据集的下载链接和校验码与'fra-eng'标识关联起来
d2l.DATA_HUB['fra-eng'] = (d2l.DATA_URL + 'fra-eng.zip','94646ad1522d915e7b0f9296181140edcf86a4f5')def read_data_nmt():"""载入 “英语-法语” 数据集 """# 下载并解压数据集data_dir = d2l.download_extract('fra-eng')# 读取数据并返回with open(os.path.join(data_dir, 'fra.txt'), 'r', encoding='utf-8') as f:return f.read()# 几个预处理步骤
def preprocess_nmt(text):"""预处理 “英语-法语” 数据集"""# 判断字符是否是特定标点符号并且前一个字符不是空格def no_space(char, prev_char):return char in set(',.!?') and prev_char != ' '# 替换特殊字符为空格,转换为小写text = text.replace('\u202f', ' ').replace('\xa0', ' ').lower()out = [# 对于每个字符,如果它的索引大于0(即不是第一个字符),并且满足 no_space 函数的条件,则在该字符前添加一个空格,否则,直接使用该字符。' ' + char if i > 0 and no_space(char, text[i - 1]) else char# (enumerate 函数将字符串 text 中的每个字符及其索引打包成元组i为下标、char为字符)for i, char in enumerate(text)]return ''.join(out) # 将处理后的字符列表转换为字符串# 指定处理的示例数量。如果为 None,则处理所有行。
def tokenize_nmt(text, num_examples=None):"""词元化 “英语-法语” 数据数据集 """# 存储英语和法语的词元序列source, target = [], []# 将每一行及其索引打包成元组 (i, line)for i, line in enumerate(text.split('\n')):# 如果指定了num_examples且当前行索引i大于num_examples,则结束循环if num_examples and i > num_examples:break# 按制表符分割行parts = line.split('\t')# 如果行中包含了两个部分if len(parts) == 2:# 将英语部分按空格分割为词元,并添加到source列表source.append(parts[0].split(' ')) # 英语# 将法语部分按空格分割为词元,并添加到target列表target.append(parts[1].split(' ')) # 法语return source, target# 调用函数读取数据集
raw_text = read_data_nmt()
# 调用预处理函数处理原始文本
text = preprocess_nmt(raw_text)# 调用函数词元化文本
source, target = tokenize_nmt(text)
# 创建源语言的词汇表对象
src_vocab = d2l.Vocab(source, min_freq=2,reserved_tokens=['<pad>', '<bos>', '<eos>']) # pad表示句子的填充,bos 表示句子开始,eos表示句子结束,min_freq=2表示句子长度小于2个就不要了
# 计算词汇表的大小
print(len(src_vocab))
固定长度阶段或填充
序列样本都有一个固定的长度截断或填充文本序列
# 序列样本都有一个固定长度截断或填充文本序列
def truncate_pad(line, num_steps, padding_token):"""截断或填充文本序列"""# 如果文本序列长度超过了指定的长度if len(line) > num_steps:# 截断文本序列,取前num_steps个词元return line[:num_steps]# 填充文本序列,添加padding_token直到长度达到num_stepsreturn line + [padding_token] * (num_steps - len(line))
# 对源语言的第一个文本序列进行截断或填充
print(truncate_pad(src_vocab[source[0]], 10, src_vocab['<pad>']))
该部分总代码
import os
import torch
from d2l import torch as d2l# 下载和预处理数据集
# 将数据集的下载链接和校验码与'fra-eng'标识关联起来
d2l.DATA_HUB['fra-eng'] = (d2l.DATA_URL + 'fra-eng.zip','94646ad1522d915e7b0f9296181140edcf86a4f5')def read_data_nmt():"""载入 “英语-法语” 数据集 """# 下载并解压数据集data_dir = d2l.download_extract('fra-eng')# 读取数据并返回with open(os.path.join(data_dir, 'fra.txt'), 'r', encoding='utf-8') as f:return f.read()# 几个预处理步骤
def preprocess_nmt(text):"""预处理 “英语-法语” 数据集"""# 判断字符是否是特定标点符号并且前一个字符不是空格def no_space(char, prev_char):return char in set(',.!?') and prev_char != ' '# 替换特殊字符为空格,转换为小写text = text.replace('\u202f', ' ').replace('\xa0', ' ').lower()out = [# 对于每个字符,如果它的索引大于0(即不是第一个字符),并且满足 no_space 函数的条件,则在该字符前添加一个空格,否则,直接使用该字符。' ' + char if i > 0 and no_space(char, text[i - 1]) else char# (enumerate 函数将字符串 text 中的每个字符及其索引打包成元组i为下标、char为字符)for i, char in enumerate(text)]return ''.join(out) # 将处理后的字符列表转换为字符串# 指定处理的示例数量。如果为 None,则处理所有行。
def tokenize_nmt(text, num_examples=None):"""词元化 “英语-法语” 数据数据集 """# 存储英语和法语的词元序列source, target = [], []# 将每一行及其索引打包成元组 (i, line)for i, line in enumerate(text.split('\n')):# 如果指定了num_examples且当前行索引i大于num_examples,则结束循环if num_examples and i > num_examples:break# 按制表符分割行parts = line.split('\t')# 如果行中包含了两个部分if len(parts) == 2:# 将英语部分按空格分割为词元,并添加到source列表source.append(parts[0].split(' ')) # 英语# 将法语部分按空格分割为词元,并添加到target列表target.append(parts[1].split(' ')) # 法语return source, target# 序列样本都有一个固定长度截断或填充文本序列
def truncate_pad(line, num_steps, padding_token):"""截断或填充文本序列"""# 如果文本序列长度超过了指定的长度if len(line) > num_steps:# 截断文本序列,取前num_steps个词元return line[:num_steps]# 填充文本序列,添加padding_token直到长度达到num_stepsreturn line + [padding_token] * (num_steps - len(line))# 调用函数读取数据集
raw_text = read_data_nmt()
# 调用预处理函数处理原始文本
text = preprocess_nmt(raw_text)# 调用函数词元化文本
source, target = tokenize_nmt(text)
# 创建源语言的词汇表对象
src_vocab = d2l.Vocab(source, min_freq=2,reserved_tokens=['<pad>', '<bos>', '<eos>']) # pad表示句子的填充,bos 表示句子开始,eos表示句子结束,min_freq=2表示句子长度小于2个就不要了
# 对源语言的第一个文本序列进行截断或填充
print(truncate_pad(src_vocab[source[0]], 10, src_vocab['<pad>']))
转换成小批量数据集用于训练
def build_array_nmt(lines, vocab, num_steps):"""将机器翻译的文本序列转换成小批量"""# 遍历lines中的每个句子(每个句子是一个词元列表),并将每个词元通过vocab字典转换成对应的索引值,从而得到一个由索引列表组成的列表。lines = [vocab[l] for l in lines]print(lines)print('<eos>')# 每个句子后面加一个截止符'<eos>'lines = [l + [vocab['<eos>']] for l in lines]# 构建小批量数据集的张量表示,将索引列表转换成为PyTorch张量arrayarray = torch.tensor([truncate_pad(l, num_steps, vocab['<pad>']) for l in lines])# sum(1)沿着第一个维度(即每个句子的长度方向)求和,得到每个句子的实际长度valid_len = (array != vocab['<pad>']).type(torch.int32).sum(1)# 返回小批量数据集的张量表示和实际长度return array, valid_len # valid_len 为原始句子的实际长度v
示例:

# 使用列表推导式更新 lines
lines = [[vocab[l] for l in sentence] for sentence in lines]print(lines) # 输出: [[1, 2], [3, 4, 5]]

训练模型
def load_data_nmt(batch_size, num_steps, num_examples=600):"""返回翻译数据集的迭代器和词汇表"""# 预处理原始数据集text = preprocess_nmt(read_data_nmt())# 对预处理后的文本进行词元化source, target = tokenize_nmt(text, num_examples)# 创建源语言词汇表对象src_vocab = d2l.Vocab(source, min_freq=2,reserved_tokens=['<pad>', '<bos>', '<eos>'])# 创建目标语言词汇表对象tgt_vocab = d2l.Vocab(target, min_freq=2,reserved_tokens=['<pad>', '<bos>', '<eos>'])# 将源语言文本序列转换为小批量数据集的张量表示和实际长度src_array, src_valid_len = build_array_nmt(source, src_vocab, num_steps)# 将目标语言文本序列转换为小批量数据集的张量表示和实际长度tgt_array, tgt_valid_len = build_array_nmt(target, tgt_vocab, num_steps)# 构建数据集的张量表示和实际长度的元组data_arrays = (src_array, src_valid_len, tgt_array, tgt_valid_len)# 加载数据集并创建迭代器data_iter = d2l.load_array(data_arrays, batch_size)# 返回数据迭代器和源语言、目标语言的词汇表对象return data_iter, src_vocab, tgt_vocab




总代码
import os
import torch
from d2l import torch as d2l# 下载和预处理数据集
# 将数据集的下载链接和校验码与'fra-eng'标识关联起来
d2l.DATA_HUB['fra-eng'] = (d2l.DATA_URL + 'fra-eng.zip','94646ad1522d915e7b0f9296181140edcf86a4f5')def read_data_nmt():"""载入 “英语-法语” 数据集 """# 下载并解压数据集data_dir = d2l.download_extract('fra-eng')# 读取数据并返回with open(os.path.join(data_dir, 'fra.txt'), 'r', encoding='utf-8') as f:return f.read()# 几个预处理步骤
def preprocess_nmt(text):"""预处理 “英语-法语” 数据集"""# 判断字符是否是特定标点符号并且前一个字符不是空格def no_space(char, prev_char):return char in set(',.!?') and prev_char != ' '# 替换特殊字符为空格,转换为小写text = text.replace('\u202f', ' ').replace('\xa0', ' ').lower()out = [# 对于每个字符,如果它的索引大于0(即不是第一个字符),并且满足 no_space 函数的条件,则在该字符前添加一个空格,否则,直接使用该字符。' ' + char if i > 0 and no_space(char, text[i - 1]) else char# (enumerate 函数将字符串 text 中的每个字符及其索引打包成元组i为下标、char为字符)for i, char in enumerate(text)]return ''.join(out) # 将处理后的字符列表转换为字符串# 指定处理的示例数量。如果为 None,则处理所有行。
def tokenize_nmt(text, num_examples=None):"""词元化 “英语-法语” 数据数据集 """# 存储英语和法语的词元序列source, target = [], []# 将每一行及其索引打包成元组 (i, line)for i, line in enumerate(text.split('\n')):# 如果指定了num_examples且当前行索引i大于num_examples,则结束循环if num_examples and i > num_examples:break# 按制表符分割行parts = line.split('\t')# 如果行中包含了两个部分if len(parts) == 2:# 将英语部分按空格分割为词元,并添加到source列表source.append(parts[0].split(' ')) # 英语# 将法语部分按空格分割为词元,并添加到target列表target.append(parts[1].split(' ')) # 法语return source, target# 序列样本都有一个固定长度截断或填充文本序列
def truncate_pad(line, num_steps, padding_token):"""截断或填充文本序列"""# 如果文本序列长度超过了指定的长度if len(line) > num_steps:# 截断文本序列,取前num_steps个词元return line[:num_steps]# 填充文本序列,添加padding_token直到长度达到num_stepsreturn line + [padding_token] * (num_steps - len(line))# 转换成小批量数据集用于训练
def build_array_nmt(lines, vocab, num_steps):"""将机器翻译的文本序列转换成小批量"""# 遍历lines中的每个句子(每个句子是一个词元列表),并将每个词元通过vocab字典转换成对应的索引值,从而得到一个由索引列表组成的列表。lines = [vocab[l] for l in lines]# 每个句子后面加一个截止符'<eos>'lines = [l + [vocab['<eos>']] for l in lines]# 构建小批量数据集的张量表示,将索引列表转换成为PyTorch张量arrayarray = torch.tensor([truncate_pad(l, num_steps, vocab['<pad>']) for l in lines])# sum(1)沿着第一个维度(即每个句子的长度方向)求和,得到每个句子的实际长度valid_len = (array != vocab['<pad>']).type(torch.int32).sum(1)# 返回小批量数据集的张量表示和实际长度return array, valid_len # valid_len 为原始句子的实际长度# 训练模型
def load_data_nmt(batch_size, num_steps, num_examples=600):"""返回翻译数据集的迭代器和词汇表"""# 预处理原始数据集text = preprocess_nmt(read_data_nmt())# 对预处理后的文本进行词元化source, target = tokenize_nmt(text, num_examples)# 创建源语言词汇表对象src_vocab = d2l.Vocab(source, min_freq=2,reserved_tokens=['<pad>', '<bos>', '<eos>'])# 创建目标语言词汇表对象tgt_vocab = d2l.Vocab(target, min_freq=2,reserved_tokens=['<pad>', '<bos>', '<eos>'])# 将源语言文本序列转换为小批量数据集的张量表示和实际长度src_array, src_valid_len = build_array_nmt(source, src_vocab, num_steps)# 将目标语言文本序列转换为小批量数据集的张量表示和实际长度tgt_array, tgt_valid_len = build_array_nmt(target, tgt_vocab, num_steps)# 构建数据集的张量表示和实际长度的元组data_arrays = (src_array, src_valid_len, tgt_array, tgt_valid_len)# 加载数据集并创建迭代器data_iter = d2l.load_array(data_arrays, batch_size)# 返回数据迭代器和源语言、目标语言的词汇表对象return data_iter, src_vocab, tgt_vocab# 读出 “英语-法语” 数据集中第一个小批量数据
# 加载翻译数据集的迭代器和词汇表,设置每个小批量的大小和序列长度
train_iter, src_vocab, tgt_vocab = load_data_nmt(batch_size=2, num_steps=8)
# 遍历数据迭代器,获取每个小批量的数据和有效长度
# X是英语、Y是法语
for X, X_valid_len, Y, Y_valid_len in train_iter:# 打印源语言序列的张量表示(整数类型)print('X:', X.type(torch.int32))# 打印源语言序列的有效长度print('valid lengths for X:', X_valid_len)# 打印目标语言序列的张量表示(整数类型)print('Y:', Y.type(torch.int32))# 打印目标语言序列的有效长度print('valid lengths for Y:', Y_valid_len)# 跳出循环,只打印第一个小批量数据break

相关文章:
深度学习-----------------机器翻译与数据集
目录 机器翻译与数据集下载和预处理数据集预处理步骤词元化词汇表该部分总代码 固定长度阶段或填充该部分总代码 转换成小批量数据集用于训练训练模型总代码 机器翻译与数据集 import os import torch from d2l import torch as d2l下载和预处理数据集 #save d2l.DATA_HUB[fr…...
SOMEIP_ETS_151: SD_Send_triggerEventUINT8Reliable_Eventgroup_2
测试目的: 验证DUT在Tester订阅事件组后,能够响应Tester触发的triggerEventUINT8Reliable方法,并将TestEventUINT8Reliable事件发送到订阅请求中端点选项指定的IP地址和端口。 描述 本测试用例旨在确保DUT能够正确处理事件组的订阅请求&am…...
32 C 语言指针的长度与运算(指针加减整数、指针自增自减、同类型指针相减、指针的比较运算)
目录 1 指针的长度 2 指针与整数的加减运算 3 指针自增与自减 4 同类型指针相减 5 指针的比较运算 6 测试题 1 指针的长度 在 C 语言中,sizeof 运算符可以用来计算指针的长度。指针的长度实际上与指针所指向的数据类型无关,而是与系统的位数&…...
【系统架构设计师】经典论文:轮软件三层架构设计
更多内容请见: 备考系统架构设计师-核心总结目录 文章目录 摘要正文总结摘要 本人于 2022 年 1 月参与了中石化 XX 油田 XX 采油厂“用电管理系统”的项目建设,该系统建设目标是实现分单位、分线路、分系统评价、优化、考核,全面提升采油厂用 电管理水平。在该项目组中我担…...
(C语言贪吃蛇)13.实现贪吃蛇四方向的移动
目录 前言 原代码预览 解决方法⚠️ 运行效果 总结 前言 我们上节通过Linux线程实现了两个while(1)同时运行,这样就可以一边控制方向一遍刷新出贪吃蛇的身体节点了。本节我们就来实现贪吃蛇四方向的移动。 (此图片为最终效果) 原代码预览 我们之前的代码是通过…...
Spring Boot + MyBatis 项目中常用注解详解(万字长篇解读)
Spring Boot MyBatis 项目中常用注解详解 在现代Java开发中,Spring Boot和MyBatis是两大热门框架,广泛应用于构建高效、可维护的企业级应用。两者结合使用,可以充分发挥各自的优势,提高开发效率和代码质量。在这个过程中&#x…...
AWS Network Firewall -NAT网关配置只应许白名单域名出入站
1. 创建防火墙 选择防火墙的归属子网(选择公有子网) 2. 创建规则白名单域名放行 3. 绑定相关规则 继续往下拉 绑定非托管规则 4. 配置网络路由 相关规则 参考图 解释 防火墙的归属公有子网路由表规则机器实例的规则子网路由表规则nat网管路…...
【C语言系统编程】【第二部分:并发编程】2.3 实践与案例分析
2.3 实践与案例分析 2.3.1 案例分析:多线程文件搜索程序 本文中,我们将通过一个多线程文件搜索程序的案例,展示如何在实际项目中应用多线程编程技术,并具体介绍任务分解、线程创建、结果汇总及锁机制的应用。 2.3.1.1 任务分解…...
React -AppVarContext.Provider 提供者组件
AppVarContext.Provider 是一个 React 上下文提供者,通常用于在组件树中提供共享的状态或数据。下面将详细解释 AppVarContext.Provider 的作用和如何使用它。展示如何使用 AppVarContext.Provider 来管理全局状态 1. 什么是上下文(Context)…...
【Python】解密用户代理:使用 Python User Agents 库探索浏览器和设备信息
Python User Agents 是一个专为解析 User Agent 字符串而设计的 Python 库。它能够轻松识别访问设备的类型(如移动设备、桌面设备或平板),并获取设备、浏览器、操作系统等详细信息。借助它,开发者可以更好地了解访问用户的设备属性…...
以串口接口为例介绍关于BSP底层架构开发的迭代过程
以串口接口为例介绍关于BSP底层架构开发的迭代过程 文章目录 以串口接口为例介绍关于BSP底层架构开发的迭代过程架构概述初代BSP二代BSP:三代BSP:四代BSP:架构概述 单片机开发有四个阶段: 阶段一:单一单片机的功能实现阶段 此阶段你开始熟悉STM32F1系列的单片机,并利用…...
Label-Studio ML利用yolov8模型实现自动标注
引言 Label Studio ML 后端是一个 SDK,用于包装您的机器学习代码并将其转换为 Web 服务器。Web 服务器可以连接到正在运行的 Label Studio 实例,以自动执行标记任务。我们提供了一个示例模型库,您可以在自己的工作流程中使用这些模型&#x…...
【PostgreSQL】实战篇——用户管理、角色和权限控制的高级用法及技巧
数据库中用户管理、角色和权限控制不仅仅是基础的安全措施,更是实现复杂应用需求和优化数据库性能的重要手段。 通过深入理解这些概念,数据库管理员可以更有效地管理用户访问、确保数据安全,并优化系统性能。以下是对这些概念的详细介绍以及…...
Leetcode: 0011-0020题速览
Leetcode: 0011-0020题速览 本文材料来自于LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解 遵从开源协议为知识共享 版权归属-相同方式…...
Hive数仓操作(七)
一、 Hive动态分区表 1. 动态分区与静态分区的区别 分区定义: 静态分区:在插入数据时,需要手动指定分区字段的值。动态分区:分区字段的值是根据数据中的某个字段自动生成的,用户只需指定分区字段的类型。 数据加载方…...
Redis进阶篇 - 缓存穿透、缓存击穿、缓存雪崩问题及其解决方案
文章目录 1 文章概述2 缓存穿透2.1 什么是缓存穿透?2.2 缓存穿透的解决方法2.2.1 做好参数校验2.2.2 缓存无效Key2.2.3 使用布隆过滤器2.2.4 接口限流 3 缓存击穿3.1 什么是缓存击穿?3.2 缓存击穿的解决方法3.2.1 调整热点数据过期时间3.2.2 热点数据预热…...
一天认识一个硬件之电源
无论是台式机还是笔记本,都离不开电源,台式机和笔记本电脑的电源都承担着将交流电转换为直流电,并为电脑内部各个部件提供稳定电力供应的重要任务。今天就来分享一下台式机和笔记本的电源区别 设计和功率 台式机电源:设计为内置…...
关于BSV区块链覆盖网络的常见问题解答(上篇)
发表时间:2024年9月20日 在BSV区块链上的覆盖网络服务为寻求可扩展、安全、高效交易处理解决方案的开发者和企业家开辟了新的视野。 作为开创性的曼达拉升级的一部分,覆盖网络服务提供了一个强大的框架,用于管理特定类型的交易和数据访问…...
VUE 开发——Node.js学习(一)
一、认识Node.js Node.js是一个跨平台JavaScript运行环境,使开发者可以搭建服务器端的JavaScript应用程序 使用Node.js编写服务器端程序——编写数据接口、前端工程化; Node.js环境没有BOM和DOM; Node.js安装:下载node-v16.19…...
角膜移植难题现,传统方式缺陷显,创新水凝胶破局
大家好!今天来了解一篇天然聚合物衍生光固化生物粘附水凝胶研究——《Natural polymer-derived photocurable bioadhesive hydrogels for sutureless keratoplasty》发表于《Bioactive Materials》。本文介绍了一种用于无缝合角膜移植术的天然聚合物衍生光固化生物粘…...
网络编程(Modbus进阶)
思维导图 Modbus RTU(先学一点理论) 概念 Modbus RTU 是工业自动化领域 最广泛应用的串行通信协议,由 Modicon 公司(现施耐德电气)于 1979 年推出。它以 高效率、强健性、易实现的特点成为工业控制系统的通信标准。 包…...
web vue 项目 Docker化部署
Web 项目 Docker 化部署详细教程 目录 Web 项目 Docker 化部署概述Dockerfile 详解 构建阶段生产阶段 构建和运行 Docker 镜像 1. Web 项目 Docker 化部署概述 Docker 化部署的主要步骤分为以下几个阶段: 构建阶段(Build Stage):…...
基于当前项目通过npm包形式暴露公共组件
1.package.sjon文件配置 其中xh-flowable就是暴露出去的npm包名 2.创建tpyes文件夹,并新增内容 3.创建package文件夹...
vue3 字体颜色设置的多种方式
在Vue 3中设置字体颜色可以通过多种方式实现,这取决于你是想在组件内部直接设置,还是在CSS/SCSS/LESS等样式文件中定义。以下是几种常见的方法: 1. 内联样式 你可以直接在模板中使用style绑定来设置字体颜色。 <template><div :s…...
Qwen3-Embedding-0.6B深度解析:多语言语义检索的轻量级利器
第一章 引言:语义表示的新时代挑战与Qwen3的破局之路 1.1 文本嵌入的核心价值与技术演进 在人工智能领域,文本嵌入技术如同连接自然语言与机器理解的“神经突触”——它将人类语言转化为计算机可计算的语义向量,支撑着搜索引擎、推荐系统、…...
基于Docker Compose部署Java微服务项目
一. 创建根项目 根项目(父项目)主要用于依赖管理 一些需要注意的点: 打包方式需要为 pom<modules>里需要注册子模块不要引入maven的打包插件,否则打包时会出问题 <?xml version"1.0" encoding"UTF-8…...
WordPress插件:AI多语言写作与智能配图、免费AI模型、SEO文章生成
厌倦手动写WordPress文章?AI自动生成,效率提升10倍! 支持多语言、自动配图、定时发布,让内容创作更轻松! AI内容生成 → 不想每天写文章?AI一键生成高质量内容!多语言支持 → 跨境电商必备&am…...
AI编程--插件对比分析:CodeRider、GitHub Copilot及其他
AI编程插件对比分析:CodeRider、GitHub Copilot及其他 随着人工智能技术的快速发展,AI编程插件已成为提升开发者生产力的重要工具。CodeRider和GitHub Copilot作为市场上的领先者,分别以其独特的特性和生态系统吸引了大量开发者。本文将从功…...
蓝桥杯3498 01串的熵
问题描述 对于一个长度为 23333333的 01 串, 如果其信息熵为 11625907.5798, 且 0 出现次数比 1 少, 那么这个 01 串中 0 出现了多少次? #include<iostream> #include<cmath> using namespace std;int n 23333333;int main() {//枚举 0 出现的次数//因…...
零基础在实践中学习网络安全-皮卡丘靶场(第九期-Unsafe Fileupload模块)(yakit方式)
本期内容并不是很难,相信大家会学的很愉快,当然对于有后端基础的朋友来说,本期内容更加容易了解,当然没有基础的也别担心,本期内容会详细解释有关内容 本期用到的软件:yakit(因为经过之前好多期…...
