当前位置: 首页 > news >正文

Label-Studio ML利用yolov8模型实现自动标注

引言

Label Studio ML 后端是一个 SDK,用于包装您的机器学习代码并将其转换为 Web 服务器。Web 服务器可以连接到正在运行的 Label Studio 实例,以自动执行标记任务。我们提供了一个示例模型库,您可以在自己的工作流程中使用这些模型,也可以根据需要进行扩展和自定义。

如果您想改为编写自己的模型,请参阅编写自己的 ML 后端。

1、创建后端服务

地址:GitHub - HumanSignal/label-studio-ml-backend: Configs and boilerplates for Label Studio's Machine Learning backend

终端导航至本地仓库目录 :

#用清华的源会快一点
pip install -e . -i https://pypi.tuna.tsinghua.edu.cn/simple
#创建自己的后端服务
label-studio-ml create Stopsign_ml_backend

1.1、环境变量设置

增加环境变量:LABEL_STUDIO_URL,LABEL_STUDIO_API_KEY

LABEL_STUDIO_URL: LS的IP端口号,如:127.0.0.1:8080

LABEL_STUDIO_API_KEY:LS中个人账户的秘钥

1.2、修改model.py文件

实现predict函数,对于目标检测模型:

from typing import List, Dict, Optional
from label_studio_ml.model import LabelStudioMLBase
from label_studio_ml.response import ModelResponse
from label_studio_ml.utils import get_single_tag_keys, get_local_path
import requests, os
from ultralytics import YOLO
from PIL import Image
from io import BytesIOLS_URL = os.environ['LABEL_STUDIO_URL']
LS_API_TOKEN = os.environ['LABEL_STUDIO_API_KEY']class YOLOv8Model(LabelStudioMLBase):"""Custom ML Backend model"""def setup(self):"""Configure any parameters of your model here"""self.set("model_version", "0.0.1")self.from_name, self.to_name, self.value, self.classes = get_single_tag_keys(self.parsed_label_config, 'RectangleLabels', 'Image')self.model = YOLO("D:\\Label-stutio-ml-backend\\Stopsign_ml_backend\\best.pt")self.labels = self.model.namesdef predict(self, tasks: List[Dict], context: Optional[Dict] = None, **kwargs) -> ModelResponse:task = tasks[0]# header = {#     "Authorization": "Token " + LS_API_TOKEN}# image = Image.open(BytesIO(requests.get(#     LS_URL + task['data']['image'], headers=header).content))url = tasks[0]['data']['image']print(f'url is: {url}')image_path = self.get_local_path(url=url,ls_host=LS_URL,task_id=tasks[0]['id'])print(f'image_path: {image_path}')image = Image.open(image_path)original_width, original_height = image.sizepredictions = []score = 0i = 0results = self.model.predict(image,conf=0.5)for result in results:for i, prediction in enumerate(result.boxes):xyxy = prediction.xyxy[0].tolist()predictions.append({"id": str(i),"from_name": self.from_name,"to_name": self.to_name,"type": "rectanglelabels","score": prediction.conf.item(),"original_width": original_width,"original_height": original_height,"image_rotation": 0,"value": {"rotation": 0,"x": xyxy[0] / original_width * 100, "y": xyxy[1] / original_height * 100,"width": (xyxy[2] - xyxy[0]) / original_width * 100,"height": (xyxy[3] - xyxy[1]) / original_height * 100,"rectanglelabels": [self.labels[int(prediction.cls.item())]]}})score += prediction.conf.item()print(f"Prediction Score is {score:.3f}.")    final_prediction = [{"result": predictions,"score": score / (i + 1),"model_version": "v8n"}]return ModelResponse(predictions=final_prediction)def fit(self, event, data, **kwargs):"""This method is called each time an annotation is created or updatedYou can run your logic here to update the model and persist it to the cacheIt is not recommended to perform long-running operations here, as it will block the main threadInstead, consider running a separate process or a thread (like RQ worker) to perform the training:param event: event type can be ('ANNOTATION_CREATED', 'ANNOTATION_UPDATED', 'START_TRAINING'):param data: the payload received from the event (check [Webhook event reference](https://labelstud.io/guide/webhook_reference.html))"""# use cache to retrieve the data from the previous fit() runsold_data = self.get('my_data')old_model_version = self.get('model_version')print(f'Old data: {old_data}')print(f'Old model version: {old_model_version}')# store new data to the cacheself.set('my_data', 'my_new_data_value')self.set('model_version', 'my_new_model_version')print(f'New data: {self.get("my_data")}')print(f'New model version: {self.get("model_version")}')print('fit() completed successfully.')

1.3、启动服务

label-studio-ml start Stopsign_ml_backend -p 9091

2、LS前端配置

在项目设置页面设置模型,打开交互预标注

 在标注页面打开新的图片,出现缓冲条表示在向后台请求预测数据

预测成功如下图所示,会多出一个标注,如果没有则是请求数据错误,请检查后端服务配置

 

这里用的是一个yoloV8-OBB模型,带方向的矩形框,它的Model.py参考这里

 https://download.csdn.net/download/weixin_42253874/89820948

相关文章:

Label-Studio ML利用yolov8模型实现自动标注

引言 Label Studio ML 后端是一个 SDK,用于包装您的机器学习代码并将其转换为 Web 服务器。Web 服务器可以连接到正在运行的 Label Studio 实例,以自动执行标记任务。我们提供了一个示例模型库,您可以在自己的工作流程中使用这些模型&#x…...

【PostgreSQL】实战篇——用户管理、角色和权限控制的高级用法及技巧

数据库中用户管理、角色和权限控制不仅仅是基础的安全措施,更是实现复杂应用需求和优化数据库性能的重要手段。 通过深入理解这些概念,数据库管理员可以更有效地管理用户访问、确保数据安全,并优化系统性能。以下是对这些概念的详细介绍以及…...

Leetcode: 0011-0020题速览

Leetcode: 0011-0020题速览 本文材料来自于LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解 遵从开源协议为知识共享 版权归属-相同方式…...

Hive数仓操作(七)

一、 Hive动态分区表 1. 动态分区与静态分区的区别 分区定义: 静态分区:在插入数据时,需要手动指定分区字段的值。动态分区:分区字段的值是根据数据中的某个字段自动生成的,用户只需指定分区字段的类型。 数据加载方…...

Redis进阶篇 - 缓存穿透、缓存击穿、缓存雪崩问题及其解决方案

文章目录 1 文章概述2 缓存穿透2.1 什么是缓存穿透?2.2 缓存穿透的解决方法2.2.1 做好参数校验2.2.2 缓存无效Key2.2.3 使用布隆过滤器2.2.4 接口限流 3 缓存击穿3.1 什么是缓存击穿?3.2 缓存击穿的解决方法3.2.1 调整热点数据过期时间3.2.2 热点数据预热…...

一天认识一个硬件之电源

无论是台式机还是笔记本,都离不开电源,台式机和笔记本电脑的电源都承担着将交流电转换为直流电,并为电脑内部各个部件提供稳定电力供应的重要任务。今天就来分享一下台式机和笔记本的电源区别 设计和功率 台式机电源:设计为内置…...

关于BSV区块链覆盖网络的常见问题解答(上篇)

​​发表时间:2024年9月20日 在BSV区块链上的覆盖网络服务为寻求可扩展、安全、高效交易处理解决方案的开发者和企业家开辟了新的视野。 作为开创性的曼达拉升级的一部分,覆盖网络服务提供了一个强大的框架,用于管理特定类型的交易和数据访问…...

VUE 开发——Node.js学习(一)

一、认识Node.js Node.js是一个跨平台JavaScript运行环境,使开发者可以搭建服务器端的JavaScript应用程序 使用Node.js编写服务器端程序——编写数据接口、前端工程化; Node.js环境没有BOM和DOM; Node.js安装:下载node-v16.19…...

角膜移植难题现,传统方式缺陷显,创新水凝胶破局

大家好!今天来了解一篇天然聚合物衍生光固化生物粘附水凝胶研究——《Natural polymer-derived photocurable bioadhesive hydrogels for sutureless keratoplasty》发表于《Bioactive Materials》。本文介绍了一种用于无缝合角膜移植术的天然聚合物衍生光固化生物粘…...

探索Spring Boot:实现“衣依”服装电商平台

1系统概述 1.1 研究背景 如今互联网高速发展,网络遍布全球,通过互联网发布的消息能快而方便的传播到世界每个角落,并且互联网上能传播的信息也很广,比如文字、图片、声音、视频等。从而,这种种好处使得互联网成了信息传…...

使用 cron 来设置定时任务

使用 cron 来设置定时任务,以便定期运行这个脚本。 在 Linux 系统中设置定时任务的步骤: 1. 编辑 cron 任务 打开终端并输入以下命令以编辑 crontab 文件: crontab -e2. 设置每天 8 点运行脚本 在 crontab 文件的最后,添加以下…...

C# Blazor Server 调用海康H5Player播放摄像头画面

目标 调用海康综合安防平台api,通过摄像头的cameraIndexCode调用【获取监控点预览取流URLv2】api,得到websocket 的url,然后在blazor server中使用htplayer.js播放摄像头实时画面。 步骤 根据摄像头名字,调用【查询监控点列表v2…...

CSS实现服务卡片

CSS实现服务卡片 效果展示 CSS 知识点 回顾整体CSS知识点灵活运用CSS知识点 页面整体布局 <div class"container"><div class"card"><div class"box"><div class"icon"><ion-icon name"color-pal…...

问:如何判断系统环境是大端/小端存储?

大端存储&#xff08;Big Endian&#xff09;和小端存储&#xff08;Little Endian&#xff09;是两种不同的字节序&#xff08;即字节顺序&#xff09;规则&#xff0c;用于在计算机中存储和表示多字节数据类型&#xff08;例如整数&#xff09;。 概念解释 大端存储&#x…...

使用NumPy进行线性代数的快速指南

介绍 NumPy 是 Python 中用于数值计算的基础包。它提供了处理数组和矩阵的高效操作&#xff0c;这对于数据分析和科学计算至关重要。在本指南中&#xff0c;我们将探讨 NumPy 中可用的一些基本线性代数操作&#xff0c;展示如何通过运算符重载和内置函数执行这些操作。 元素级…...

uni-app之旅-day02-分类页面

提示&#xff1a;文章写完后&#xff0c;目录可以自动生成&#xff0c;如何生成可参考右边的帮助文档 文章目录 前言创建cate分支4.1 渲染分类页面的基本结构4.2 获取分类数据4.3 动态渲染左侧的一级分类列表4.4 动态渲染右侧的二级分类列表4.5 动态渲染右侧的三级分类列表4.6 …...

鸿蒙harmonyos next flutter通信之BasicMessageChannel获取app版本号

本文将通过BasicMessageChannel获取app版本号&#xff0c;以此来演练BasicMessageChannel用法。 建立channel flutter代码&#xff1a; //建立通道 BasicMessageChannel basicMessageChannel BasicMessageChannel("com.xmg.basicMessageChannel",StringCodec());…...

【文件增量备份系统】MySQL百万量级数据量分页查询性能优化

&#x1f3af; 导读&#xff1a;本文针对大数据量下的分页查询性能问题进行了深入探讨与优化&#xff0c;最初查询耗时长达12秒&#xff0c;通过避免全表计数及利用缓存保存总数的方式显著提升了浅分页查询速度。面对深分页时依然存在的延迟&#xff0c;采用先查询倒数第N条记录…...

音视频入门基础:FLV专题(12)——FFmpeg源码中,解析DOUBLE类型的ScriptDataValue的实现

一、引言 从《音视频入门基础&#xff1a;FLV专题&#xff08;9&#xff09;——Script Tag简介》中可以知道&#xff0c;根据《video_file_format_spec_v10_1.pdf》第80到81页&#xff0c;SCRIPTDATAVALUE类型由一个8位&#xff08;1字节&#xff09;的Type和一个ScriptDataV…...

【AI知识点】分层可导航小世界网络算法 HNSW(Hierarchical Navigable Small World)

HNSW&#xff08;Hierarchical Navigable Small World&#xff09;分层可导航小世界网络算法 是一种高效的近似最近邻搜索&#xff08;Approximate Nearest Neighbor Search, ANN&#xff09; 算法&#xff0c;特别适用于大规模、高维数据集的相似性检索。HNSW 基于小世界网络&…...

在软件开发中正确使用MySQL日期时间类型的深度解析

在日常软件开发场景中&#xff0c;时间信息的存储是底层且核心的需求。从金融交易的精确记账时间、用户操作的行为日志&#xff0c;到供应链系统的物流节点时间戳&#xff0c;时间数据的准确性直接决定业务逻辑的可靠性。MySQL作为主流关系型数据库&#xff0c;其日期时间类型的…...

linux之kylin系统nginx的安装

一、nginx的作用 1.可做高性能的web服务器 直接处理静态资源&#xff08;HTML/CSS/图片等&#xff09;&#xff0c;响应速度远超传统服务器类似apache支持高并发连接 2.反向代理服务器 隐藏后端服务器IP地址&#xff0c;提高安全性 3.负载均衡服务器 支持多种策略分发流量…...

ubuntu搭建nfs服务centos挂载访问

在Ubuntu上设置NFS服务器 在Ubuntu上&#xff0c;你可以使用apt包管理器来安装NFS服务器。打开终端并运行&#xff1a; sudo apt update sudo apt install nfs-kernel-server创建共享目录 创建一个目录用于共享&#xff0c;例如/shared&#xff1a; sudo mkdir /shared sud…...

8k长序列建模,蛋白质语言模型Prot42仅利用目标蛋白序列即可生成高亲和力结合剂

蛋白质结合剂&#xff08;如抗体、抑制肽&#xff09;在疾病诊断、成像分析及靶向药物递送等关键场景中发挥着不可替代的作用。传统上&#xff0c;高特异性蛋白质结合剂的开发高度依赖噬菌体展示、定向进化等实验技术&#xff0c;但这类方法普遍面临资源消耗巨大、研发周期冗长…...

【机器视觉】单目测距——运动结构恢复

ps&#xff1a;图是随便找的&#xff0c;为了凑个封面 前言 在前面对光流法进行进一步改进&#xff0c;希望将2D光流推广至3D场景流时&#xff0c;发现2D转3D过程中存在尺度歧义问题&#xff0c;需要补全摄像头拍摄图像中缺失的深度信息&#xff0c;否则解空间不收敛&#xf…...

(二)原型模式

原型的功能是将一个已经存在的对象作为源目标,其余对象都是通过这个源目标创建。发挥复制的作用就是原型模式的核心思想。 一、源型模式的定义 原型模式是指第二次创建对象可以通过复制已经存在的原型对象来实现,忽略对象创建过程中的其它细节。 📌 核心特点: 避免重复初…...

Nginx server_name 配置说明

Nginx 是一个高性能的反向代理和负载均衡服务器&#xff0c;其核心配置之一是 server 块中的 server_name 指令。server_name 决定了 Nginx 如何根据客户端请求的 Host 头匹配对应的虚拟主机&#xff08;Virtual Host&#xff09;。 1. 简介 Nginx 使用 server_name 指令来确定…...

人工智能(大型语言模型 LLMs)对不同学科的影响以及由此产生的新学习方式

今天是关于AI如何在教学中增强学生的学习体验&#xff0c;我把重要信息标红了。人文学科的价值被低估了 ⬇️ 转型与必要性 人工智能正在深刻地改变教育&#xff0c;这并非炒作&#xff0c;而是已经发生的巨大变革。教育机构和教育者不能忽视它&#xff0c;试图简单地禁止学生使…...

【从零开始学习JVM | 第四篇】类加载器和双亲委派机制(高频面试题)

前言&#xff1a; 双亲委派机制对于面试这块来说非常重要&#xff0c;在实际开发中也是经常遇见需要打破双亲委派的需求&#xff0c;今天我们一起来探索一下什么是双亲委派机制&#xff0c;在此之前我们先介绍一下类的加载器。 目录 ​编辑 前言&#xff1a; 类加载器 1. …...

k8s从入门到放弃之Pod的容器探针检测

k8s从入门到放弃之Pod的容器探针检测 在Kubernetes&#xff08;简称K8s&#xff09;中&#xff0c;容器探测是指kubelet对容器执行定期诊断的过程&#xff0c;以确保容器中的应用程序处于预期的状态。这些探测是保障应用健康和高可用性的重要机制。Kubernetes提供了两种种类型…...