当前位置: 首页 > news >正文

边缘自适应粒子滤波(Edge-Adaptive Particle Filter)的MATLAB函数示例,以及相应的讲解

a8101ee6c8d64d4b930424debe02ec94.png

 

目录

讲解

初始化

预测步骤

观测模拟

权重更新

重采样

状态估计

总结


 

 

下面是一个简单的边缘自适应粒子滤波(eq?Edge-Adaptive%20Particle%20Filter)的eq?MATLAB函数示例,以及相应的讲解。

程序源代码:

function X_est = edgeAdaptiveParticleFilter(numParticles, numSteps, processNoise, measurementNoise, initialState)% 边缘自适应粒子滤波% 参数:% numParticles - 粒子数量% numSteps - 时间步长% processNoise - 过程噪声% measurementNoise - 观测噪声% initialState - 初始状态% 初始化粒子和权重particles = repmat(initialState, 1, numParticles) + randn(size(initialState, 1), numParticles) * processNoise;weights = ones(numParticles, 1) / numParticles;% 状态估计存储X_est = zeros(size(initialState, 1), numSteps);X_est(:, 1) = initialState;for t = 2:numSteps% 预测步骤particles = particles + randn(size(particles)) * processNoise;% 模拟真实观测trueState = initialState + randn(size(initialState)) * processNoise;measurement = trueState + randn(size(initialState)) * measurementNoise;% 更新权重for i = 1:numParticles% 边缘自适应调整:考虑边缘情况if abs(measurement(1) - particles(1, i)) > 5weights(i) = normpdf(measurement(1), particles(1, i), measurementNoise * 2);elseweights(i) = normpdf(measurement(1), particles(1, i), measurementNoise);endendweights = weights / sum(weights); % 归一化权重% 重采样indices = randsample(1:numParticles, numParticles, true, weights);particles = particles(:, indices);% 状态估计X_est(:, t) = mean(particles, 2);end
end

讲解

 

初始化

  1. 粒子初始化:在初始状态周围生成一组粒子,模拟可能的状态。
  2. 权重初始化:所有粒子的初始权重相同,表示均匀的先验分布。

预测步骤

  1. 状态转移:为每个粒子添加过程噪声,模拟系统的动态变化。
  2. 过程噪声:通常用高斯噪声模拟实际系统中的不确定性。

观测模拟

  1. 真实状态生成:在每个时间步,用过程噪声更新真实状态。
  2. 观测值生成:在真实状态基础上添加观测噪声,模拟测量结果。

权重更新

  1. 匹配程度计算:通过高斯概率密度函数计算每个粒子与观测值的匹配程度。

  2. 边缘自适应:如果粒子与观测值的差距大于阈值,例如5:

    • 增加观测噪声:通过增大标准差来降低粒子权重的影响。
    • 目的:提高对异常情况的适应能力,避免过度惩罚。
  3. 权重归一化:确保所有权重的总和为1,使其成为有效的概率分布。

重采样

  1. 防止退化:根据权重重新选择粒子,粒子权重越高,被选择的概率越大。
  2. 方法:常用多项式重采样或系统重采样。

状态估计

  1. 加权平均:通过粒子的位置和权重计算当前时刻的状态估计。
  2. 结果:提供系统状态的最优估计,以跟踪真实状态。

总结

边缘自适应粒子滤波通过在权重更新阶段考虑异常情况,提高了对动态环境的适应性和鲁棒性。这种方法特别适合处理非线性、非高斯问题,在复杂的动态系统中表现优越。

 

 

 

相关文章:

边缘自适应粒子滤波(Edge-Adaptive Particle Filter)的MATLAB函数示例,以及相应的讲解

目录 讲解 初始化 预测步骤 观测模拟 权重更新 重采样 状态估计 总结 下面是一个简单的边缘自适应粒子滤波()的函数示例,以及相应的讲解。 程序源代码: function X_est edgeAdaptiveParticleFilter(numParticles, numS…...

一块1T硬盘怎么有sdb1和sdb2

在一块 1TB 硬盘上看到两个分区 sdb1 和 sdb2 是非常常见的现象。硬盘可以被划分为多个分区,每个分区都可以用作不同的目的,如存储不同类型的数据、安装不同的操作系统或为系统不同的功能提供支持。 1. 分区的概念 硬盘可以被划分为多个分区&#xff0…...

Python知识点:如何使用Flink与Python进行实时数据处理

开篇,先说一个好消息,截止到2025年1月1日前,翻到文末找到我,赠送定制版的开题报告和任务书,先到先得!过期不候! 如何使用Flink与Python进行实时数据处理 Apache Flink是一个流处理框架&#xf…...

Swagger配置且添加小锁(asp.net)(笔记)

此博客是基于 asp.net core web api(.net core3.1)框架进行操作的。 一、安装Swagger包 在 NuGet程序包管理中安装下面的两个包: swagger包:Swashbuckle.AspNetCore swagger包过滤器:Swashbuckle.AspNetCore.Filters 二、swagger注册 在…...

lambda表达式底层实现:反编译LambdaMetafactory + 转储dump + 运行过程 + 反汇编 + 动态指令invokedynamic

一、结论先行 lambda 底层实现机制 1.lambda 表达式的本质:函数式接口的匿名子类的匿名对象 2.lambda表达式是语法糖 语法糖:编码时是lambda简洁的表达式,在字节码期,语法糖会被转换为实际复杂的实现方式,含义不变&am…...

Unity初识+面板介绍

Unity版本使用 小版本号高,出现bug可能性更小;一台电脑可以安装多个版本的Unity,但是需要安装在不同路径;安装Unity时不能有中文路径;Unity项目路径也不要有中文。 Scene面板 相当于拍电影的片场,Unity程…...

【CSS in Depth 2 精译_041】6.4 CSS 中的堆叠上下文与 z-index(上)

当前内容所在位置(可进入专栏查看其他译好的章节内容) 第一章 层叠、优先级与继承(已完结)第二章 相对单位(已完结)第三章 文档流与盒模型(已完结)第四章 Flexbox 布局(已…...

uniapp微信小程序巧用跳转封装鉴权路由

1.这是封装的跳转方法: import store from "../stores/store";function Router(type, url, params) {const NoLoginPage [。。。。。];var queryString Object.keys(params).map((key) > ${key}${params[key]}).join("&");if (!NoLog…...

国外电商系统开发-运维系统开发

因项目运营环境在国外,所以必须将服务器选择国外,加上第一次运营国外项目。在两大趋势下,企业的运营方向必须通过大数据来分析及修正运营方向,加上后期服务器数量日益增多,如何有效的管理众多的服务器及验证运营方向&a…...

基于投影滤波算法的rick合成地震波滤波matlab仿真

目录 1.课题概述 2.系统仿真结果 3.核心程序与模型 4.系统原理简介 4.1 RICK合成地震波模型 4.2 投影滤波算法原理 5.完整工程文件 1.课题概述 基于投影滤波算法的rick合成地震波滤波matlab仿真。分别通过标准的滤波投影滤波以及卷积滤波投影滤波对合成地震剖面进行滤波…...

【艾思科蓝】机器学习框架终极指南:PyTorch vs TensorFlow vs Keras vs Scikit-learn

第十届建筑、土木与水利工程国际学术会议(ICACHE 2024)_艾思科蓝_学术一站式服务平台 更多学术会议请看:学术会议-学术交流征稿-学术会议在线-艾思科蓝 目录 引言 1. PyTorch PyTorch的特点 PyTorch的用例 PyTorch的安装 PyTorch代码示例 2. TensorFlow …...

招联金融秋招内推2025

【投递方式】 直接扫下方二维码,或点击内推官网https://wecruit.hotjob.cn/SU61025e262f9d247b98e0a2c2/mc/position/campus,使用内推码 igcefb 投递) 【招聘岗位】 后台开发 前端开发 数据开发 数据运营 算法开发 技术运维 软件测试 产品策…...

遮罩解决图片悬浮操作看不到的情况

未悬浮效果 悬浮效果 如果仅仅是添加绝对定位&#xff0c;那么遇到白色图片&#xff0c;就会看不到白色字体。通过遮罩&#xff08;绝对定位透明度&#xff09;就可以解决这个问题。 <script setup> </script><template><div class"box"><…...

IoT网关的主要功能有哪些?天拓四方

在数字化浪潮席卷全球的今天&#xff0c;物联网&#xff08;IoT&#xff09;技术凭借其独特的优势&#xff0c;逐渐在各个领域展现出强大的生命力。而IoT网关&#xff0c;作为连接物理世界与数字世界的桥梁&#xff0c;其在物联网体系中的作用愈发凸显。 一、数据聚合与预处理…...

继承实现单例模式的探索(一)

前言 之前看到朋友采用继承的方式来实现单例模式&#xff0c;觉得很厉害&#xff0c;随后自己去探索了一番&#xff0c;以前实现单例模式都是把代码内联到具体的类中&#xff0c;这使得工程中每次需要使用单例模式时&#xff0c;都采用拷贝的方式&#xff0c;增加了很多冗余代码…...

【代码实现】opencv 高斯模糊和pytorch 高斯模糊

wiki百科 Gaussian Blur&#xff0c;也叫高斯平滑&#xff0c;是在Adobe Photoshop、GIMP以及Paint.NET等图像处理软件中广泛使用的处理效果&#xff0c;通常用它来减少图像噪声以及降低细节层次。 opencv实现 opencv实现高斯滤波有两种方式&#xff0c; 1、是使用自带的cv2…...

python基础语法2

文章目录 1.顺序语句2.条件语句2.1 语法格式 3.缩进与代码块4.空语句 pass5.循环语句5.1 while循环5.2 for循环 5.3 continue与break 1.顺序语句 默认情况下&#xff0c;python的代码都是按照从上到下的顺序依次执行的。 print(hello ) print(world)结果一定是hello world。写…...

linux第一课:下载与安装

这是我的个人复习笔记&#xff0c;草稿箱字太多会卡就发这了&#xff0c;欢迎大家阅读。 Kali Linux&#xff0c;黑客必备神器。跟着我&#xff0c;带你从入门到入狱&#xff01; 第一课&#xff0c;下载与安装。 第一步&#xff1a; 在官网下载Centos镜像&#xff1a;http…...

虚拟机添加共享文件夹后仍无法显示文件

参考: https://blog.csdn.net/Pretender_1205/article/details/134859089 进入/mnt/hgfs目录下执行 sudo mount -t fuse.vmhgfs-fuse .host:/ /mnt/hgfs -o allow_other/mnt/hgfs 是挂载点&#xff0c;也可以修改为其他挂载点-o allow_other表示允许其他用户(普通用户)访问共…...

OSPF协议

基础知识 OSPF:开放式最短路径优先协议 (无类别链路状态IGP动态协议) OSPF的特点&#xff1a; 1.OSPF将自治系统划分为逻辑上的区域&#xff0c;使用LSA来发布路由信息&#xff0c;并通过OSPF报文在区域内路由器之间交互建立链路状态数据库和路由表 2.支持等开销的负载均衡…...

突破不可导策略的训练难题:零阶优化与强化学习的深度嵌合

强化学习&#xff08;Reinforcement Learning, RL&#xff09;是工业领域智能控制的重要方法。它的基本原理是将最优控制问题建模为马尔可夫决策过程&#xff0c;然后使用强化学习的Actor-Critic机制&#xff08;中文译作“知行互动”机制&#xff09;&#xff0c;逐步迭代求解…...

《Qt C++ 与 OpenCV:解锁视频播放程序设计的奥秘》

引言:探索视频播放程序设计之旅 在当今数字化时代,多媒体应用已渗透到我们生活的方方面面,从日常的视频娱乐到专业的视频监控、视频会议系统,视频播放程序作为多媒体应用的核心组成部分,扮演着至关重要的角色。无论是在个人电脑、移动设备还是智能电视等平台上,用户都期望…...

Java 8 Stream API 入门到实践详解

一、告别 for 循环&#xff01; 传统痛点&#xff1a; Java 8 之前&#xff0c;集合操作离不开冗长的 for 循环和匿名类。例如&#xff0c;过滤列表中的偶数&#xff1a; List<Integer> list Arrays.asList(1, 2, 3, 4, 5); List<Integer> evens new ArrayList…...

ssc377d修改flash分区大小

1、flash的分区默认分配16M、 / # df -h Filesystem Size Used Available Use% Mounted on /dev/root 1.9M 1.9M 0 100% / /dev/mtdblock4 3.0M...

YSYX学习记录(八)

C语言&#xff0c;练习0&#xff1a; 先创建一个文件夹&#xff0c;我用的是物理机&#xff1a; 安装build-essential 练习1&#xff1a; 我注释掉了 #include <stdio.h> 出现下面错误 在你的文本编辑器中打开ex1文件&#xff0c;随机修改或删除一部分&#xff0c;之后…...

ardupilot 开发环境eclipse 中import 缺少C++

目录 文章目录 目录摘要1.修复过程摘要 本节主要解决ardupilot 开发环境eclipse 中import 缺少C++,无法导入ardupilot代码,会引起查看不方便的问题。如下图所示 1.修复过程 0.安装ubuntu 软件中自带的eclipse 1.打开eclipse—Help—install new software 2.在 Work with中…...

GC1808高性能24位立体声音频ADC芯片解析

1. 芯片概述 GC1808是一款24位立体声音频模数转换器&#xff08;ADC&#xff09;&#xff0c;支持8kHz~96kHz采样率&#xff0c;集成Δ-Σ调制器、数字抗混叠滤波器和高通滤波器&#xff0c;适用于高保真音频采集场景。 2. 核心特性 高精度&#xff1a;24位分辨率&#xff0c…...

管理学院权限管理系统开发总结

文章目录 &#x1f393; 管理学院权限管理系统开发总结 - 现代化Web应用实践之路&#x1f4dd; 项目概述&#x1f3d7;️ 技术架构设计后端技术栈前端技术栈 &#x1f4a1; 核心功能特性1. 用户管理模块2. 权限管理系统3. 统计报表功能4. 用户体验优化 &#x1f5c4;️ 数据库设…...

SiFli 52把Imagie图片,Font字体资源放在指定位置,编译成指定img.bin和font.bin的问题

分区配置 (ptab.json) img 属性介绍&#xff1a; img 属性指定分区存放的 image 名称&#xff0c;指定的 image 名称必须是当前工程生成的 binary 。 如果 binary 有多个文件&#xff0c;则以 proj_name:binary_name 格式指定文件名&#xff0c; proj_name 为工程 名&…...

推荐 github 项目:GeminiImageApp(图片生成方向,可以做一定的素材)

推荐 github 项目:GeminiImageApp(图片生成方向&#xff0c;可以做一定的素材) 这个项目能干嘛? 使用 gemini 2.0 的 api 和 google 其他的 api 来做衍生处理 简化和优化了文生图和图生图的行为(我的最主要) 并且有一些目标检测和切割(我用不到) 视频和 imagefx 因为没 a…...