【代码实现】opencv 高斯模糊和pytorch 高斯模糊
wiki百科
Gaussian Blur,也叫高斯平滑,是在Adobe Photoshop、GIMP以及Paint.NET等图像处理软件中广泛使用的处理效果,通常用它来减少图像噪声以及降低细节层次。
opencv实现
opencv实现高斯滤波有两种方式,
1、是使用自带的
cv2.GaussianBlur
,
2、自己构造高斯kernel
,然后调用cv2.filter2D
函数,
方法2这个高斯kernel
也可以使用opencv自带的cv2.getGaussianKernel
来创建,并通过乘以转置来获得NXN
的核。
以下是示例代码。
import cv2
import numpy as np
original_image = np.random.rand(256, 256, 3).astype(np.float32)# 设置高斯核大小和标准差
sigma = 0.334# 确定高斯核大小
kernel_size = int(6 * sigma + 1) # 通常选择为 6*sigma + 1# 使用 OpenCV 进行高斯模糊,方法1
a = cv2.GaussianBlur(original_image, (0, 0), sigma)# 使用 OpenCV 进行高斯模糊,方法2
kernel = cv2.getGaussianKernel(kernel_size, sigma)
kernel = kernel * kernel.transpose()b = cv2.filter2D(original_image, -1, kernel)
print(np.abs(a - b).max())
np.allclose(a, b, atol=1e-3)
pytorch 实现
有可能在构建的网络中需要使用高斯滤波,但是又不想通过opencv实现,也可以在tensor层面对图像进行高斯滤波。也就是使用卷积的方式来实现filter
。
同样实现方式也有两种,
1、使用 F.conv2d的方式
2、使用nn.Conv2d ,但权重 需要固定
需要先定义高斯核,然后在采用上述两种方式来具体实现
# 定义高斯核
def gaussian_kernel(size, sigma):x = torch.arange(size, dtype=torch.float32) - size // 2kernel_1d = torch.exp(-0.5 * (x / sigma) ** 2)kernel_1d /= kernel_1d.sum()kernel_2d = torch.outer(kernel_1d, kernel_1d)return kernel_2d.unsqueeze(0).unsqueeze(0)
特别需要注意的是group
要设置为3,RGB通道分别使用高斯核,不然结果会出错。
以下是两种方法的实现。
# 方法1 F.conv2d应用高斯模糊
def apply_gaussian_blur(image, kernel_size, sigma):padding = (kernel_size - 1) // 2# 使用 ReflectionPad2d 进行填充img_torch_pad = F.pad(image, pad=(padding, padding, padding, padding), mode='reflect')kernel = gaussian_kernel(kernel_size, sigma)kernel = kernel.repeat(3, 1, 1, 1) # 重复以匹配输入图像的通道数kernel = kernel.to(image.device)# 使用卷积操作进行高斯模糊blurred_image = F.conv2d(img_torch_pad, kernel, padding=0, groups=3)return blurred_image
# 方法2 创建带有固定高斯核的Conv2D层
class GaussianBlur(nn.Module):def __init__(self, kernel_size, sigma, in_channels=3):super(GaussianBlur, self).__init__()kernel = gaussian_kernel(kernel_size, sigma)kernel = kernel.repeat(in_channels, 1, 1, 1) # 重复以匹配输入图像的通道数self.conv = nn.Conv2d(in_channels, in_channels, kernel_size=kernel_size, padding=0,stride=1,groups=in_channels, bias=False)self.padding = (kernel_size-1)//2self.conv.weight.data = kerneldef forward(self, x):x = F.pad(x, pad=(self.padding, self.padding, self.padding, self.padding), mode='reflect')#x = self.pad(x)return self.conv(x)
比较四种方法的差异
# 创建一个形状为 (1, 3, 256, 56) 的随机图像
original_image = np.random.rand(1, 3, 256, 56)
original_image_np = original_image[0].transpose(1, 2, 0)# 将 NumPy 数组转换为 PyTorch 张量
original_image_tensor = torch.tensor(original_image, dtype=torch.float32)# 设置高斯核大小和标准差
sigma = 0.334# 确定高斯核大小
kernel_size = int(6 * sigma + 1) # 通常选择为 6*sigma + 1# opencv 方法1
opencv1 = cv2.GaussianBlur(original_image_np, (0, 0), sigma).transpose(2, 0, 1)[np.newaxis, ...] #根据sigma创建kernel,一般是6s +1
# opencv 方法2
# 使用 OpenCV 进行高斯模糊,方法2
kernel = cv2.getGaussianKernel(kernel_size, sigma)
kernel = kernel * kernel.transpose()
opencv2 = cv2.filter2D(original_image_np, -1, kernel).transpose(2, 0, 1)[np.newaxis, ...]
# torch 方法1
torch1 = apply_gaussian_blur(original_image_tensor, kernel_size, sigma).numpy()
# torch 方法2
blur_layer = GaussianBlur(kernel_size, sigma)
torch2 = blur_layer(original_image_tensor).detach().numpy()def all_arrays_close(*arrays):reference = arrays[0]for array in arrays[1:]:if not np.allclose(reference, array,rtol=1e-5, atol=1e-8):return Falsereturn Trueif all_arrays_close(opencv1, opencv2, torch1, torch2):print("All arrays are close to each other.")
else:print("Arrays are not close to each other.")
输出
说明四种方法是等价的。
相关文章:

【代码实现】opencv 高斯模糊和pytorch 高斯模糊
wiki百科 Gaussian Blur,也叫高斯平滑,是在Adobe Photoshop、GIMP以及Paint.NET等图像处理软件中广泛使用的处理效果,通常用它来减少图像噪声以及降低细节层次。 opencv实现 opencv实现高斯滤波有两种方式, 1、是使用自带的cv2…...

python基础语法2
文章目录 1.顺序语句2.条件语句2.1 语法格式 3.缩进与代码块4.空语句 pass5.循环语句5.1 while循环5.2 for循环 5.3 continue与break 1.顺序语句 默认情况下,python的代码都是按照从上到下的顺序依次执行的。 print(hello ) print(world)结果一定是hello world。写…...

linux第一课:下载与安装
这是我的个人复习笔记,草稿箱字太多会卡就发这了,欢迎大家阅读。 Kali Linux,黑客必备神器。跟着我,带你从入门到入狱! 第一课,下载与安装。 第一步: 在官网下载Centos镜像:http…...
虚拟机添加共享文件夹后仍无法显示文件
参考: https://blog.csdn.net/Pretender_1205/article/details/134859089 进入/mnt/hgfs目录下执行 sudo mount -t fuse.vmhgfs-fuse .host:/ /mnt/hgfs -o allow_other/mnt/hgfs 是挂载点,也可以修改为其他挂载点-o allow_other表示允许其他用户(普通用户)访问共…...

OSPF协议
基础知识 OSPF:开放式最短路径优先协议 (无类别链路状态IGP动态协议) OSPF的特点: 1.OSPF将自治系统划分为逻辑上的区域,使用LSA来发布路由信息,并通过OSPF报文在区域内路由器之间交互建立链路状态数据库和路由表 2.支持等开销的负载均衡…...

行为设计模式 -观察者模式- JAVA
观察者模式 一.简介二. 案例2.1 抽象主题(Subject)2.2 具体主题(Concrete Subject)2.3 抽象观察者(Observer)2.4 具体观察者(Concrete Observer)2.5 测试 三. 结论3.1 优缺点3.2 使用…...
在阿里工作是一种什么体验?
很多人都对在阿里工作感到好奇,今天就来给大家分享一下在阿里工作是一种什么体验~ 首先,先来介绍一下阿里的职位等级划分标准。 简单来讲,阿里的职位等级可以认为是 P 序列和 M 序列,但目前 M 序列已经不太对中下层员工开放了&…...

828华为云征文|华为云Flexus云服务器X实例——uniapp功能开发、搭建股票系统选择用什么服务器比较好?
在二次开发、安装搭建股票系统时,选择华为云Flexus X服务器是一个值得考虑的优质选项。以下是一些具体的建议: 测试环境:Linux系统CentOS7.6、宝塔、PHP7.3、MySQL5.7,根目录public,伪静态thinkphp,开启ssl…...

电子电路元件器介绍与选型——晶振
一、晶振 在我们使用嘉立创的时候,经常会看到晶振接到两个电容,这两个电容毫无疑问是滤波的,整个晶振其实就是一个振荡器,但这个振荡器会将其他频率给过滤掉,只保留一个频率也就是晶振的标称频率。当然上面讲的很明显是…...

【IEEE PDF eXpress】格式不对
目录 一、问题二、解决方法 一、问题 word的文档,用IEEE PDF eXpress网站生成pdf后,提交论文出现错误: Document validation failed due to the following errors: Content exceeds IEEE template margins for its format (Page 1:Bottom).…...

OpenAI全新多模态内容审核模型上线:基于 GPT-4o,可检测文本和图像
在数字时代,内容安全问题愈发受到重视。9月26日,OpenAI 正式推出了一款全新的多模态内容审核模型,名为 “omni-moderation-latest”。 该模型基于最新的 GPT-4o 技术,能够准确地识别检测有害文本图像。这一更新将为开发者提供强大…...

Visual Studio 字体与主题推荐
个人推荐,仅供参考: 主题:One Monokai VS Theme 链接:One Monokai VS Theme - Visual Studio Marketplacehttps://marketplace.visualstudio.com/items?itemNameazemoh.onemonokai 效果: 字体:JetBrain…...
信息学奥赛一本通 1416:【17NOIP普及组】棋盘 | 洛谷 P3956 [NOIP2017 普及组] 棋盘
【题目链接】 洛谷 P3956 [NOIP2017 普及组] 棋盘 ybt 1416:【17NOIP普及组】棋盘 【题目考点】 1. 深搜:深搜回溯 2. 深搜剪枝:最优化剪枝 【解题思路】 搜索从左上角到右下角的所有走法中花费金币最少的走法。 需要使用深搜回溯&…...

UE4完整教程 UE4简介 UE4学习攻略及文件格式
开头附上工作招聘面试必备问题噢~~包括综合面试题、无领导小组面试题资源文件免费!全文干货。 UE4简介学习攻略UE4Demo代码面试内容资源-CSDN文库https://download.csdn.net/download/m0_72216164/89825102 工作招聘无领导小组面试全攻略最常见面试题(第一部分)共有17章+可…...

JVM内存回收机制
目录 1.JVM运行时数据区 2.JVM类加载过程 3.双清委派模型 4.垃圾回收机制(GC) 找出谁是垃圾方案一:引用计数 找出谁是垃圾:方案二,可达性分析 释放垃圾的内存空间 判断垃圾:jvm依据对象的年龄对 对象…...
中国身份证号码校验
题目描述 第二届河南省最美教师评选开始了,每一位同学都可以投票选出你支持的人选,但是为了防止刷票,必须通过身份验证才可投票。负责投票平台后台的老大爷希望你能帮他验证身份证号的合法性,防止那些熊孩子随意刷票,…...

【Kubernetes】常见面试题汇总(五十四)
目录 120.创建 init C 容器后,其状态不正常? 特别说明: 题目 1-68 属于【Kubernetes】的常规概念题,即 “ 汇总(一)~(二十二)” 。 题目 69-113 属于【Kubernetes】的生产…...

不懂外语也能无障碍交流?探索4款超好用中英翻译工具
嘿,各位外贸流程的小伙伴们,今儿咱们来聊聊那些翻译神器,看看它们在中英文互译这条路上,是怎么给我们这些天天跟洋文打交道的哥们儿姐们儿减轻负担的。我亲身体验了福昕翻译在线、福昕翻译大师、海鲸AI翻译还有腾讯翻译君…...

C++ WebDriver扩展
概述 WebDriver协议基于HTTP,使用JSON进行数据传输,定义了client与driver之间的通信标准。无论client的实现语言(如Java或C#),都能通过协议中的endpoints准确指示driver执行各种操作,覆盖了Selenium的所有功…...
WeChat_DevTools 断点调试方法总结
新建工程,以小程序 login 调试为例,代码如下: // 登录wx.login({success: res > {// 发送 res.code 到后台换取 openId, sessionKey, unionIddebugger;resThis this;wx.showModal({title: 登录成功,content: res.code res.code,comple…...

stm32G473的flash模式是单bank还是双bank?
今天突然有人stm32G473的flash模式是单bank还是双bank?由于时间太久,我真忘记了。搜搜发现,还真有人和我一样。见下面的链接:https://shequ.stmicroelectronics.cn/forum.php?modviewthread&tid644563 根据STM32G4系列参考手…...

docker详细操作--未完待续
docker介绍 docker官网: Docker:加速容器应用程序开发 harbor官网:Harbor - Harbor 中文 使用docker加速器: Docker镜像极速下载服务 - 毫秒镜像 是什么 Docker 是一种开源的容器化平台,用于将应用程序及其依赖项(如库、运行时环…...

K8S认证|CKS题库+答案| 11. AppArmor
目录 11. AppArmor 免费获取并激活 CKA_v1.31_模拟系统 题目 开始操作: 1)、切换集群 2)、切换节点 3)、切换到 apparmor 的目录 4)、执行 apparmor 策略模块 5)、修改 pod 文件 6)、…...

从WWDC看苹果产品发展的规律
WWDC 是苹果公司一年一度面向全球开发者的盛会,其主题演讲展现了苹果在产品设计、技术路线、用户体验和生态系统构建上的核心理念与演进脉络。我们借助 ChatGPT Deep Research 工具,对过去十年 WWDC 主题演讲内容进行了系统化分析,形成了这份…...

Mybatis逆向工程,动态创建实体类、条件扩展类、Mapper接口、Mapper.xml映射文件
今天呢,博主的学习进度也是步入了Java Mybatis 框架,目前正在逐步杨帆旗航。 那么接下来就给大家出一期有关 Mybatis 逆向工程的教学,希望能对大家有所帮助,也特别欢迎大家指点不足之处,小生很乐意接受正确的建议&…...

YSYX学习记录(八)
C语言,练习0: 先创建一个文件夹,我用的是物理机: 安装build-essential 练习1: 我注释掉了 #include <stdio.h> 出现下面错误 在你的文本编辑器中打开ex1文件,随机修改或删除一部分,之后…...

NLP学习路线图(二十三):长短期记忆网络(LSTM)
在自然语言处理(NLP)领域,我们时刻面临着处理序列数据的核心挑战。无论是理解句子的结构、分析文本的情感,还是实现语言的翻译,都需要模型能够捕捉词语之间依时序产生的复杂依赖关系。传统的神经网络结构在处理这种序列依赖时显得力不从心,而循环神经网络(RNN) 曾被视为…...
全面解析各类VPN技术:GRE、IPsec、L2TP、SSL与MPLS VPN对比
目录 引言 VPN技术概述 GRE VPN 3.1 GRE封装结构 3.2 GRE的应用场景 GRE over IPsec 4.1 GRE over IPsec封装结构 4.2 为什么使用GRE over IPsec? IPsec VPN 5.1 IPsec传输模式(Transport Mode) 5.2 IPsec隧道模式(Tunne…...

什么是Ansible Jinja2
理解 Ansible Jinja2 模板 Ansible 是一款功能强大的开源自动化工具,可让您无缝地管理和配置系统。Ansible 的一大亮点是它使用 Jinja2 模板,允许您根据变量数据动态生成文件、配置设置和脚本。本文将向您介绍 Ansible 中的 Jinja2 模板,并通…...

html css js网页制作成品——HTML+CSS榴莲商城网页设计(4页)附源码
目录 一、👨🎓网站题目 二、✍️网站描述 三、📚网站介绍 四、🌐网站效果 五、🪓 代码实现 🧱HTML 六、🥇 如何让学习不再盲目 七、🎁更多干货 一、👨…...