【代码实现】opencv 高斯模糊和pytorch 高斯模糊
wiki百科
Gaussian Blur,也叫高斯平滑,是在Adobe Photoshop、GIMP以及Paint.NET等图像处理软件中广泛使用的处理效果,通常用它来减少图像噪声以及降低细节层次。
opencv实现
opencv实现高斯滤波有两种方式,
1、是使用自带的
cv2.GaussianBlur,
2、自己构造高斯kernel,然后调用cv2.filter2D函数,
方法2这个高斯kernel也可以使用opencv自带的cv2.getGaussianKernel来创建,并通过乘以转置来获得NXN的核。
以下是示例代码。
import cv2
import numpy as np
original_image = np.random.rand(256, 256, 3).astype(np.float32)# 设置高斯核大小和标准差
sigma = 0.334# 确定高斯核大小
kernel_size = int(6 * sigma + 1) # 通常选择为 6*sigma + 1# 使用 OpenCV 进行高斯模糊,方法1
a = cv2.GaussianBlur(original_image, (0, 0), sigma)# 使用 OpenCV 进行高斯模糊,方法2
kernel = cv2.getGaussianKernel(kernel_size, sigma)
kernel = kernel * kernel.transpose()b = cv2.filter2D(original_image, -1, kernel)
print(np.abs(a - b).max())
np.allclose(a, b, atol=1e-3)
pytorch 实现
有可能在构建的网络中需要使用高斯滤波,但是又不想通过opencv实现,也可以在tensor层面对图像进行高斯滤波。也就是使用卷积的方式来实现filter。
同样实现方式也有两种,
1、使用 F.conv2d的方式
2、使用nn.Conv2d ,但权重 需要固定
需要先定义高斯核,然后在采用上述两种方式来具体实现
# 定义高斯核
def gaussian_kernel(size, sigma):x = torch.arange(size, dtype=torch.float32) - size // 2kernel_1d = torch.exp(-0.5 * (x / sigma) ** 2)kernel_1d /= kernel_1d.sum()kernel_2d = torch.outer(kernel_1d, kernel_1d)return kernel_2d.unsqueeze(0).unsqueeze(0)
特别需要注意的是group 要设置为3,RGB通道分别使用高斯核,不然结果会出错。
以下是两种方法的实现。
# 方法1 F.conv2d应用高斯模糊
def apply_gaussian_blur(image, kernel_size, sigma):padding = (kernel_size - 1) // 2# 使用 ReflectionPad2d 进行填充img_torch_pad = F.pad(image, pad=(padding, padding, padding, padding), mode='reflect')kernel = gaussian_kernel(kernel_size, sigma)kernel = kernel.repeat(3, 1, 1, 1) # 重复以匹配输入图像的通道数kernel = kernel.to(image.device)# 使用卷积操作进行高斯模糊blurred_image = F.conv2d(img_torch_pad, kernel, padding=0, groups=3)return blurred_image
# 方法2 创建带有固定高斯核的Conv2D层
class GaussianBlur(nn.Module):def __init__(self, kernel_size, sigma, in_channels=3):super(GaussianBlur, self).__init__()kernel = gaussian_kernel(kernel_size, sigma)kernel = kernel.repeat(in_channels, 1, 1, 1) # 重复以匹配输入图像的通道数self.conv = nn.Conv2d(in_channels, in_channels, kernel_size=kernel_size, padding=0,stride=1,groups=in_channels, bias=False)self.padding = (kernel_size-1)//2self.conv.weight.data = kerneldef forward(self, x):x = F.pad(x, pad=(self.padding, self.padding, self.padding, self.padding), mode='reflect')#x = self.pad(x)return self.conv(x)
比较四种方法的差异
# 创建一个形状为 (1, 3, 256, 56) 的随机图像
original_image = np.random.rand(1, 3, 256, 56)
original_image_np = original_image[0].transpose(1, 2, 0)# 将 NumPy 数组转换为 PyTorch 张量
original_image_tensor = torch.tensor(original_image, dtype=torch.float32)# 设置高斯核大小和标准差
sigma = 0.334# 确定高斯核大小
kernel_size = int(6 * sigma + 1) # 通常选择为 6*sigma + 1# opencv 方法1
opencv1 = cv2.GaussianBlur(original_image_np, (0, 0), sigma).transpose(2, 0, 1)[np.newaxis, ...] #根据sigma创建kernel,一般是6s +1
# opencv 方法2
# 使用 OpenCV 进行高斯模糊,方法2
kernel = cv2.getGaussianKernel(kernel_size, sigma)
kernel = kernel * kernel.transpose()
opencv2 = cv2.filter2D(original_image_np, -1, kernel).transpose(2, 0, 1)[np.newaxis, ...]
# torch 方法1
torch1 = apply_gaussian_blur(original_image_tensor, kernel_size, sigma).numpy()
# torch 方法2
blur_layer = GaussianBlur(kernel_size, sigma)
torch2 = blur_layer(original_image_tensor).detach().numpy()def all_arrays_close(*arrays):reference = arrays[0]for array in arrays[1:]:if not np.allclose(reference, array,rtol=1e-5, atol=1e-8):return Falsereturn Trueif all_arrays_close(opencv1, opencv2, torch1, torch2):print("All arrays are close to each other.")
else:print("Arrays are not close to each other.")
输出

说明四种方法是等价的。
相关文章:
【代码实现】opencv 高斯模糊和pytorch 高斯模糊
wiki百科 Gaussian Blur,也叫高斯平滑,是在Adobe Photoshop、GIMP以及Paint.NET等图像处理软件中广泛使用的处理效果,通常用它来减少图像噪声以及降低细节层次。 opencv实现 opencv实现高斯滤波有两种方式, 1、是使用自带的cv2…...
python基础语法2
文章目录 1.顺序语句2.条件语句2.1 语法格式 3.缩进与代码块4.空语句 pass5.循环语句5.1 while循环5.2 for循环 5.3 continue与break 1.顺序语句 默认情况下,python的代码都是按照从上到下的顺序依次执行的。 print(hello ) print(world)结果一定是hello world。写…...
linux第一课:下载与安装
这是我的个人复习笔记,草稿箱字太多会卡就发这了,欢迎大家阅读。 Kali Linux,黑客必备神器。跟着我,带你从入门到入狱! 第一课,下载与安装。 第一步: 在官网下载Centos镜像:http…...
虚拟机添加共享文件夹后仍无法显示文件
参考: https://blog.csdn.net/Pretender_1205/article/details/134859089 进入/mnt/hgfs目录下执行 sudo mount -t fuse.vmhgfs-fuse .host:/ /mnt/hgfs -o allow_other/mnt/hgfs 是挂载点,也可以修改为其他挂载点-o allow_other表示允许其他用户(普通用户)访问共…...
OSPF协议
基础知识 OSPF:开放式最短路径优先协议 (无类别链路状态IGP动态协议) OSPF的特点: 1.OSPF将自治系统划分为逻辑上的区域,使用LSA来发布路由信息,并通过OSPF报文在区域内路由器之间交互建立链路状态数据库和路由表 2.支持等开销的负载均衡…...
行为设计模式 -观察者模式- JAVA
观察者模式 一.简介二. 案例2.1 抽象主题(Subject)2.2 具体主题(Concrete Subject)2.3 抽象观察者(Observer)2.4 具体观察者(Concrete Observer)2.5 测试 三. 结论3.1 优缺点3.2 使用…...
在阿里工作是一种什么体验?
很多人都对在阿里工作感到好奇,今天就来给大家分享一下在阿里工作是一种什么体验~ 首先,先来介绍一下阿里的职位等级划分标准。 简单来讲,阿里的职位等级可以认为是 P 序列和 M 序列,但目前 M 序列已经不太对中下层员工开放了&…...
828华为云征文|华为云Flexus云服务器X实例——uniapp功能开发、搭建股票系统选择用什么服务器比较好?
在二次开发、安装搭建股票系统时,选择华为云Flexus X服务器是一个值得考虑的优质选项。以下是一些具体的建议: 测试环境:Linux系统CentOS7.6、宝塔、PHP7.3、MySQL5.7,根目录public,伪静态thinkphp,开启ssl…...
电子电路元件器介绍与选型——晶振
一、晶振 在我们使用嘉立创的时候,经常会看到晶振接到两个电容,这两个电容毫无疑问是滤波的,整个晶振其实就是一个振荡器,但这个振荡器会将其他频率给过滤掉,只保留一个频率也就是晶振的标称频率。当然上面讲的很明显是…...
【IEEE PDF eXpress】格式不对
目录 一、问题二、解决方法 一、问题 word的文档,用IEEE PDF eXpress网站生成pdf后,提交论文出现错误: Document validation failed due to the following errors: Content exceeds IEEE template margins for its format (Page 1:Bottom).…...
OpenAI全新多模态内容审核模型上线:基于 GPT-4o,可检测文本和图像
在数字时代,内容安全问题愈发受到重视。9月26日,OpenAI 正式推出了一款全新的多模态内容审核模型,名为 “omni-moderation-latest”。 该模型基于最新的 GPT-4o 技术,能够准确地识别检测有害文本图像。这一更新将为开发者提供强大…...
Visual Studio 字体与主题推荐
个人推荐,仅供参考: 主题:One Monokai VS Theme 链接:One Monokai VS Theme - Visual Studio Marketplacehttps://marketplace.visualstudio.com/items?itemNameazemoh.onemonokai 效果: 字体:JetBrain…...
信息学奥赛一本通 1416:【17NOIP普及组】棋盘 | 洛谷 P3956 [NOIP2017 普及组] 棋盘
【题目链接】 洛谷 P3956 [NOIP2017 普及组] 棋盘 ybt 1416:【17NOIP普及组】棋盘 【题目考点】 1. 深搜:深搜回溯 2. 深搜剪枝:最优化剪枝 【解题思路】 搜索从左上角到右下角的所有走法中花费金币最少的走法。 需要使用深搜回溯&…...
UE4完整教程 UE4简介 UE4学习攻略及文件格式
开头附上工作招聘面试必备问题噢~~包括综合面试题、无领导小组面试题资源文件免费!全文干货。 UE4简介学习攻略UE4Demo代码面试内容资源-CSDN文库https://download.csdn.net/download/m0_72216164/89825102 工作招聘无领导小组面试全攻略最常见面试题(第一部分)共有17章+可…...
JVM内存回收机制
目录 1.JVM运行时数据区 2.JVM类加载过程 3.双清委派模型 4.垃圾回收机制(GC) 找出谁是垃圾方案一:引用计数 找出谁是垃圾:方案二,可达性分析 释放垃圾的内存空间 判断垃圾:jvm依据对象的年龄对 对象…...
中国身份证号码校验
题目描述 第二届河南省最美教师评选开始了,每一位同学都可以投票选出你支持的人选,但是为了防止刷票,必须通过身份验证才可投票。负责投票平台后台的老大爷希望你能帮他验证身份证号的合法性,防止那些熊孩子随意刷票,…...
【Kubernetes】常见面试题汇总(五十四)
目录 120.创建 init C 容器后,其状态不正常? 特别说明: 题目 1-68 属于【Kubernetes】的常规概念题,即 “ 汇总(一)~(二十二)” 。 题目 69-113 属于【Kubernetes】的生产…...
不懂外语也能无障碍交流?探索4款超好用中英翻译工具
嘿,各位外贸流程的小伙伴们,今儿咱们来聊聊那些翻译神器,看看它们在中英文互译这条路上,是怎么给我们这些天天跟洋文打交道的哥们儿姐们儿减轻负担的。我亲身体验了福昕翻译在线、福昕翻译大师、海鲸AI翻译还有腾讯翻译君…...
C++ WebDriver扩展
概述 WebDriver协议基于HTTP,使用JSON进行数据传输,定义了client与driver之间的通信标准。无论client的实现语言(如Java或C#),都能通过协议中的endpoints准确指示driver执行各种操作,覆盖了Selenium的所有功…...
WeChat_DevTools 断点调试方法总结
新建工程,以小程序 login 调试为例,代码如下: // 登录wx.login({success: res > {// 发送 res.code 到后台换取 openId, sessionKey, unionIddebugger;resThis this;wx.showModal({title: 登录成功,content: res.code res.code,comple…...
uniapp 对接腾讯云IM群组成员管理(增删改查)
UniApp 实战:腾讯云IM群组成员管理(增删改查) 一、前言 在社交类App开发中,群组成员管理是核心功能之一。本文将基于UniApp框架,结合腾讯云IM SDK,详细讲解如何实现群组成员的增删改查全流程。 权限校验…...
国防科技大学计算机基础课程笔记02信息编码
1.机内码和国标码 国标码就是我们非常熟悉的这个GB2312,但是因为都是16进制,因此这个了16进制的数据既可以翻译成为这个机器码,也可以翻译成为这个国标码,所以这个时候很容易会出现这个歧义的情况; 因此,我们的这个国…...
前端倒计时误差!
提示:记录工作中遇到的需求及解决办法 文章目录 前言一、误差从何而来?二、五大解决方案1. 动态校准法(基础版)2. Web Worker 计时3. 服务器时间同步4. Performance API 高精度计时5. 页面可见性API优化三、生产环境最佳实践四、终极解决方案架构前言 前几天听说公司某个项…...
无法与IP建立连接,未能下载VSCode服务器
如题,在远程连接服务器的时候突然遇到了这个提示。 查阅了一圈,发现是VSCode版本自动更新惹的祸!!! 在VSCode的帮助->关于这里发现前几天VSCode自动更新了,我的版本号变成了1.100.3 才导致了远程连接出…...
Qt Widget类解析与代码注释
#include "widget.h" #include "ui_widget.h"Widget::Widget(QWidget *parent): QWidget(parent), ui(new Ui::Widget) {ui->setupUi(this); }Widget::~Widget() {delete ui; }//解释这串代码,写上注释 当然可以!这段代码是 Qt …...
Nuxt.js 中的路由配置详解
Nuxt.js 通过其内置的路由系统简化了应用的路由配置,使得开发者可以轻松地管理页面导航和 URL 结构。路由配置主要涉及页面组件的组织、动态路由的设置以及路由元信息的配置。 自动路由生成 Nuxt.js 会根据 pages 目录下的文件结构自动生成路由配置。每个文件都会对…...
JUC笔记(上)-复习 涉及死锁 volatile synchronized CAS 原子操作
一、上下文切换 即使单核CPU也可以进行多线程执行代码,CPU会给每个线程分配CPU时间片来实现这个机制。时间片非常短,所以CPU会不断地切换线程执行,从而让我们感觉多个线程是同时执行的。时间片一般是十几毫秒(ms)。通过时间片分配算法执行。…...
实现弹窗随键盘上移居中
实现弹窗随键盘上移的核心思路 在Android中,可以通过监听键盘的显示和隐藏事件,动态调整弹窗的位置。关键点在于获取键盘高度,并计算剩余屏幕空间以重新定位弹窗。 // 在Activity或Fragment中设置键盘监听 val rootView findViewById<V…...
mysql已经安装,但是通过rpm -q 没有找mysql相关的已安装包
文章目录 现象:mysql已经安装,但是通过rpm -q 没有找mysql相关的已安装包遇到 rpm 命令找不到已经安装的 MySQL 包时,可能是因为以下几个原因:1.MySQL 不是通过 RPM 包安装的2.RPM 数据库损坏3.使用了不同的包名或路径4.使用其他包…...
图表类系列各种样式PPT模版分享
图标图表系列PPT模版,柱状图PPT模版,线状图PPT模版,折线图PPT模版,饼状图PPT模版,雷达图PPT模版,树状图PPT模版 图表类系列各种样式PPT模版分享:图表系列PPT模板https://pan.quark.cn/s/20d40aa…...
