当前位置: 首页 > news >正文

Flink 03 | 数据流基本操作

图片

Flink数据流结构

DataStream 转换

通常我们需要分析的业务数据可能存在如下问题:

  • 数据中包含一些我们不需要的数据

  • 数据格式不方面分析

因此我们需要对原始数据流进行加工,比如过滤、转换等操作才可以进行数据分析。

Flink DataStream 转换主要作用:对输入的数据流(DataStream)经过各种转换操作以生成新的数据流

操作分类

  • 单条记录操作

    • 比如 Map  、 Fliter

  • 基于窗口 (Window)操作

    • 窗口根据某些特征(例如,过去 5 秒内到达的数据)对所有流事件进行分组

  • 合并数据流

    • union 、join、connect 可以将多个DataStream 合并为一个DataStream 进行分析处理

  • 拆分数据流

    • 将数据流拆分为多个数据流分别对每个数据流进行分析

基本操作

操作描述备注
Map将数据流中每个元素转换为新的元素类似 Java 中 stream.map 操作
Filter筛选只保留符合条件的数据类似 Java 中 stream.filter 操作
FlatMap将一个输入"展开"为多个元素
KeyBy将流逻辑划分为不相交的分区。所有具有相同键的记录都分配到同一个分区。
Reduce对具有相同键的元素进行规约操作,如求和、求最大值

使用示例

Map

将数据流中每个元素转换为新的元素

使用场景很多,主要对原始数据进行加工转换,Java 8 中 stream().map 操作相信大家不陌生, Flink中map 操作类似。

以下展示对数据流中数字取绝对值例子。

DataStream<Integer> dataStream = //...
dataStream.map(new MapFunction<Integer, Integer>() {@Overridepublic Integer map(Integer value) throws Exception {return value >=0 ? value : -value;}
});

Filter

筛选出数据流中符合条件的数据,进行分析, 该操作同样与Java 8 中 stream().filter 类型。

以下代码 保留数据流中正数。

dataStream.filter(new FilterFunction<Integer>() {@Overridepublic boolean filter(Integer value) throws Exception {return value > 0;}
});

FlatMap

该操作将一个输入"展开"为多个元素,简单来说一个对象,变成一个List。

典型例子,将句子拆分为单词

dataStream.flatMap(new FlatMapFunction<String, String>() {@Overridepublic void flatMap(String value, Collector<String> out)throws Exception {for(String word: value.split(" ")){out.collect(word);}}
});

Reduce 操作

对具有相同键的元素进行规约操作,如求和、求最大值。单词统计能够很好的展示 Flink 基本操作,包括reduce操作。

数据源进行KeyBy 后, Reduce 操作即 数据流按Key 分组聚合

public class WordCount {  public static void main(String[] args) throws Exception {  // 设置执行环境  final StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();  // 从文件中读取文本数据  DataStream<String> text = env.readTextFile("your file");// 使用 flatMap 将文本分割成单词  DataStream<Tuple2<String, Integer>> counts = text.flatMap(new Tokenizer())  // 使用 keyBy 分组,然后使用 reduce 进行聚合  .keyBy(value->value.f0).reduce(new ReduceFunction<Tuple2<String, Integer>>() {  @Override  public Tuple2<String, Integer> reduce(Tuple2<String, Integer> value1, Tuple2<String, Integer> value2) {  return new Tuple2<>(value1.f0, value1.f1 + value2.f1);  }  });  // 打印结果  counts.print();  // 执行程序  env.execute("Flink Word Count Example");  }  // 自定义 Tokenizer 用于分割文本  public static final class Tokenizer implements FlatMapFunction<String, Tuple2<String, Integer>> {  @Override  public void flatMap(String value, Collector<Tuple2<String, Integer>> out) {  // 使用空格分割字符串  for (String word : value.toLowerCase().split("\\s+")) {  if (word.length() > 0) {  out.collect(new Tuple2<>(word, 1));  }  }  }  }  
}

总结

本文介绍了Flink 数据流基本操作Map/Filter/FlatMap/KeyBy/Reduce 的用法以及使用场景,并通过一个完整的例子展示 这些基本操作同时使用,完成数据分析过程。

对于Flink 一些其他高级操作,会持续更新中。

相关文章:

Flink 03 | 数据流基本操作

Flink数据流结构 DataStream 转换 通常我们需要分析的业务数据可能存在如下问题&#xff1a; 数据中包含一些我们不需要的数据 数据格式不方面分析 因此我们需要对原始数据流进行加工&#xff0c;比如过滤、转换等操作才可以进行数据分析。 “ Flink DataStream 转换主要作…...

在 TS 的 class 中,如何防止外部实例化

在 TypeScript&#xff08;TS&#xff09;中&#xff0c;如果你想要防止一个类被外部实例化&#xff0c;你可以采取以下几种策略&#xff1a; 将构造函数设为私有&#xff08;Private Constructor&#xff09;&#xff1a; 通过将类的构造函数设为私有&#xff0c;你可以阻止外…...

HTML详解

HTML 基础HTML 标题HTML 段落HTML 链接HTML 图片HTML 元素HTML 注释HTML 属性HTML 文本格式化HTML 头部HTML cssHTML 表格HTML 列表HTML 自定义列表HTML 区块HTML 表单HTML 框架HTML 颜色HTML 脚本HTML 事件HTML 实体HTML urlHTML5 新元素 新元素 新元素 新元素 新元素 新元素 …...

记录|Modbus-TCP产品使用记录【德克威尔】

目录 前言一、德克威尔1.1 实验图1.2 DECOWELL IO Tester 软件1.3 读写设置1.4 C#进行Modbus-TCP读写 更新时间 前言 参考文章&#xff1a; 使用的第二款Modbus-TCP产品。 一、德克威尔 1.1 实验图 1.2 DECOWELL IO Tester 软件 这也是自带模块配置软件的。下图就是德克威尔的…...

基于深度学习的视频生成

基于深度学习的视频生成是一项极具前景的技术&#xff0c;旨在通过神经网络模型生成逼真的动态视频内容。随着生成对抗网络&#xff08;GANs&#xff09;、自回归模型、变分自编码器&#xff08;VAEs&#xff09;等深度学习模型的发展&#xff0c;视频生成技术已经取得了显著进…...

TB6612电机驱动模块(STM32)

目录 一、介绍 二、模块原理 1.原理图 2.电机驱动原理 三、程序设计 main.c文件 Motor.h文件 Motor.c文件 四、实验效果 五、资料获取 项目分享 一、介绍 TB6612FNG 是东芝半导体公司生产的一款直流电机驱动器件&#xff0c;它具有大电流 MOSFET-H 桥结构&#xff…...

webpack信息泄露

先看看webpack中文网给出的解释 webpack 是一个模块打包器。它的主要目标是将 JavaScript 文件打包在一起,打包后的文件用于在浏览器中使用,但它也能够胜任转换、打包或包裹任何资源。 如果未正确配置&#xff0c;会生成一个.map文件&#xff0c;它包含了原始JavaScript代码的映…...

启动服务并登录MySQL9数据库

【图书推荐】《MySQL 9从入门到性能优化&#xff08;视频教学版&#xff09;》-CSDN博客 《MySQL 9从入门到性能优化&#xff08;视频教学版&#xff09;&#xff08;数据库技术丛书&#xff09;》(王英英)【摘要 书评 试读】- 京东图书 (jd.com) Windows平台下安装与配置MyS…...

微服务_3.微服务保护

文章目录 一、微服务雪崩及解决方法1.1、超时处理1.2、仓壁模式1.3、断路器1.4、限流 二、Sentinel2.1、流量控制2.1.1、普通限流2.1.2、热点参数限流 2.2、线程隔离2.3、熔断降级2.3.1、断路器状态机2.3.2、断路器熔断策略2.3.2.1、慢调用2.3.2.2、异常比例&#xff0c;异常数…...

【设计模式】软件设计原则——依赖倒置合成复用

依赖倒置引出 依赖倒置 定义&#xff1a;高层模块不应该依赖低层模块&#xff0c;二者都应该依赖抽象&#xff1b;抽象不应该依赖细节&#xff0c;细节应该依赖抽象。面向接口编程而不是面向实现编程。 通过抽象使用抽象类、接口让各个类or模块之间独立不影响&#xff0c;实现…...

vue中如何实现组件通信

1. 父子组件通信 1. props和emits 我们最常见的组件通信就是父子组件数据通信。父子组件实现数据通信需要使用props和emit两个api。 在父组件中我们通过props将数据绑定给子组件&#xff0c;在子组件中我们可以通过props对象来收集到父组件传递的数据。 在子组件想要修改的pr…...

C/C++:内存管理

文章目录 前言一、内存分区1. 内存划分情况2. 最大内存计算 二、malloc/calloc/realloc 与 free1. malloc2. calloc3. realloc4. free5. 差异对比6. 失败处理 三、内存分配题目1. 题目2. 内存区域划分 四、C内存管理方式1. new 与 delete2. new/delete操作内置类型3. new和dele…...

jmeter学习(4)提取器

同线程组https://blog.csdn.net/vikeyyyy/article/details/80437530 不同线程组 在JMeter中&#xff0c;正则表达式提取的参数可以跨线程组使用。 通过使用Beanshell后置处理器和属性设置函数&#xff0c;可以将提取的参数设置为全局变量&#xff0c;从而在多个线程组之间共享…...

移动端的每日任务,golang后端数据库应该怎么设计

推荐学习文档 golang应用级os框架&#xff0c;欢迎stargolang应用级os框架使用案例&#xff0c;欢迎star案例&#xff1a;基于golang开发的一款超有个性的旅游计划app经历golang实战大纲golang优秀开发常用开源库汇总想学习更多golang知识&#xff0c;这里有免费的golang学习笔…...

1、Spring Boot 3.x 集成 Eureka Server/Client

一、前言 基于 Spring Boot 3.x 版本开发&#xff0c;因为 Spring Boot 3.x 暂时没有正式发布&#xff0c;所以很少有 Spring Boot 3.x 开发的项目&#xff0c;自己也很想了踩踩坑&#xff0c;看看 Spring Boot 3.x 与 2.x 有什么区别。自己与记录一下在 Spring Boot 3.x 过程…...

Vue根实例、实例总结

在Vue.js框架中&#xff0c;根实例和实例扮演着至关重要的角色。以下是对Vue根实例和实例的总结&#xff1a; Vue根实例 定义与创建&#xff1a; Vue根实例是Vue.js应用的核心。每个Vue应用都是通过用Vue函数创建一个新的Vue实例开始的&#xff0c;这个实例被称为根实例。根实…...

微服务架构:Spring Cloud的服务注册与发现、配置管理、服务网关、熔断器、分布式追踪

微服务架构是一种将应用程序构建为一组小型、自治的服务的方法&#xff0c;每个服务都运行在其独立的进程中&#xff0c;服务间通过轻量级通信机制&#xff08;通常是HTTP API&#xff09;进行通信。Spring Cloud是一套基于Spring Boot的微服务解决方案&#xff0c;它提供了一系…...

Spring Boot实现的大学生就业市场解决方案

1系统概述 1.1 研究背景 如今互联网高速发展&#xff0c;网络遍布全球&#xff0c;通过互联网发布的消息能快而方便的传播到世界每个角落&#xff0c;并且互联网上能传播的信息也很广&#xff0c;比如文字、图片、声音、视频等。从而&#xff0c;这种种好处使得互联网成了信息传…...

Ubuntu上安装Git:简单步骤指南

Git是目前世界上最流行的版本控制系统&#xff0c;广泛用于软件开发中。无论你是开发者还是版本控制的新手&#xff0c;Git都是你不可或缺的工具。本文将为你介绍如何在Ubuntu操作系统上安装Git。 什么是Git&#xff1f; Git是一个开源的分布式版本控制系统&#xff0c;由Lin…...

新闻推荐系统:Spring Boot的架构优势

4系统概要设计 4.1概述 本系统采用B/S结构(Browser/Server,浏览器/服务器结构)和基于Web服务两种模式&#xff0c;是一个适用于Internet环境下的模型结构。只要用户能连上Internet,便可以在任何时间、任何地点使用。系统工作原理图如图4-1所示&#xff1a; 图4-1系统工作原理…...

conda相比python好处

Conda 作为 Python 的环境和包管理工具&#xff0c;相比原生 Python 生态&#xff08;如 pip 虚拟环境&#xff09;有许多独特优势&#xff0c;尤其在多项目管理、依赖处理和跨平台兼容性等方面表现更优。以下是 Conda 的核心好处&#xff1a; 一、一站式环境管理&#xff1a…...

java_网络服务相关_gateway_nacos_feign区别联系

1. spring-cloud-starter-gateway 作用&#xff1a;作为微服务架构的网关&#xff0c;统一入口&#xff0c;处理所有外部请求。 核心能力&#xff1a; 路由转发&#xff08;基于路径、服务名等&#xff09;过滤器&#xff08;鉴权、限流、日志、Header 处理&#xff09;支持负…...

通过Wrangler CLI在worker中创建数据库和表

官方使用文档&#xff1a;Getting started Cloudflare D1 docs 创建数据库 在命令行中执行完成之后&#xff0c;会在本地和远程创建数据库&#xff1a; npx wranglerlatest d1 create prod-d1-tutorial 在cf中就可以看到数据库&#xff1a; 现在&#xff0c;您的Cloudfla…...

系统设计 --- MongoDB亿级数据查询优化策略

系统设计 --- MongoDB亿级数据查询分表策略 背景Solution --- 分表 背景 使用audit log实现Audi Trail功能 Audit Trail范围: 六个月数据量: 每秒5-7条audi log&#xff0c;共计7千万 – 1亿条数据需要实现全文检索按照时间倒序因为license问题&#xff0c;不能使用ELK只能使用…...

对WWDC 2025 Keynote 内容的预测

借助我们以往对苹果公司发展路径的深入研究经验&#xff0c;以及大语言模型的分析能力&#xff0c;我们系统梳理了多年来苹果 WWDC 主题演讲的规律。在 WWDC 2025 即将揭幕之际&#xff0c;我们让 ChatGPT 对今年的 Keynote 内容进行了一个初步预测&#xff0c;聊作存档。等到明…...

【Go】3、Go语言进阶与依赖管理

前言 本系列文章参考自稀土掘金上的 【字节内部课】公开课&#xff0c;做自我学习总结整理。 Go语言并发编程 Go语言原生支持并发编程&#xff0c;它的核心机制是 Goroutine 协程、Channel 通道&#xff0c;并基于CSP&#xff08;Communicating Sequential Processes&#xff0…...

Rust 异步编程

Rust 异步编程 引言 Rust 是一种系统编程语言,以其高性能、安全性以及零成本抽象而著称。在多核处理器成为主流的今天,异步编程成为了一种提高应用性能、优化资源利用的有效手段。本文将深入探讨 Rust 异步编程的核心概念、常用库以及最佳实践。 异步编程基础 什么是异步…...

拟合问题处理

在机器学习中&#xff0c;核心任务通常围绕模型训练和性能提升展开&#xff0c;但你提到的 “优化训练数据解决过拟合” 和 “提升泛化性能解决欠拟合” 需要结合更准确的概念进行梳理。以下是对机器学习核心任务的系统复习和修正&#xff1a; 一、机器学习的核心任务框架 机…...

高抗扰度汽车光耦合器的特性

晶台光电推出的125℃光耦合器系列产品&#xff08;包括KL357NU、KL3H7U和KL817U&#xff09;&#xff0c;专为高温环境下的汽车应用设计&#xff0c;具备以下核心优势和技术特点&#xff1a; 一、技术特性分析 高温稳定性 采用先进的LED技术和优化的IC设计&#xff0c;确保在…...

java 局域网 rtsp 取流 WebSocket 推送到前端显示 低延迟

众所周知 摄像头取流推流显示前端延迟大 传统方法是服务器取摄像头的rtsp流 然后客户端连服务器 中转多了&#xff0c;延迟一定不小。 假设相机没有专网 公网 1相机自带推流 直接推送到云服务器 然后客户端拉去 2相机只有rtsp &#xff0c;边缘服务器拉流推送到云服务器 …...