Python深度学习:从神经网络到循环神经网络
Python深度学习:从神经网络到循环神经网络
目录
- ✨ 神经网络基础
1.1 🔍 前向传播与反向传播 - 🎨 卷积神经网络(CNN)
2.1 🖼️ 图像分类任务的实现
2.2 🚀 常用架构(LeNet、VGG、ResNet) - 🔄 循环神经网络(RNN)
3.1 ⏳ 时间序列预测与NLP应用
1. ✨ 神经网络基础
1.1 🔍 前向传播与反向传播
神经网络的核心结构模拟了大脑的神经元工作机制,每一个神经元接收输入、执行计算并输出结果,多个神经元连接成网络,从而具备了复杂的学习能力。前向传播和反向传播作为神经网络的核心机制,保证了模型的训练过程。
前向传播是指数据从输入层通过网络,逐层向前传递,最终在输出层得出结果。模型中的每一层神经元都执行相同的基本操作:将输入进行加权求和,并通过激活函数进行非线性变换。以下是前向传播的实现示例:
import numpy as np# 初始化权重和偏置
weights = np.array([0.2, 0.8, -0.5])
bias = 0.1# 激活函数 - 使用Sigmoid
def sigmoid(x):return 1 / (1 + np.exp(-x))# 前向传播
def forward_propagation(inputs):linear_output = np.dot(inputs, weights) + bias # 线性计算activation_output = sigmoid(linear_output) # 应用激活函数return activation_outputinputs = np.array([0.5, -0.2, 0.1])
output = forward_propagation(inputs)
print(f"前向传播输出: {output}")
在这个简单的例子中,输入数据通过一个三节点的网络,应用了Sigmoid激活函数。这种操作能够有效处理输入的非线性关系。
反向传播是神经网络训练的关键步骤,它通过链式法则计算误差相对于每个权重的梯度。这个过程允许我们通过优化算法(如梯度下降)来更新权重,使模型逐步逼近最优解。反向传播的核心是通过误差的传递,计算每一层的权重对最终误差的影响。
# 定义损失函数 (均方误差)
def mean_squared_error(y_true, y_pred):return np.mean((y_true - y_pred) ** 2)# 反向传播
def backward_propagation(inputs, y_true, output, learning_rate=0.01):# 计算预测值和真实值之间的误差error = y_true - output# 计算Sigmoid导数sigmoid_derivative = output * (1 - output)# 计算梯度gradients = error * sigmoid_derivative# 更新权重和偏置global weights, biasweights += learning_rate * np.dot(inputs.T, gradients)bias += learning_rate * np.sum(gradients)# 示例反向传播
y_true = np.array([1])
backward_propagation(inputs, y_true, output)
这个代码通过均方误差(MSE)计算损失,并通过梯度下降的方式更新权重。通过不断迭代这个过程,神经网络能够在训练集上逐步逼近最优解。
2. 🎨 卷积神经网络(CNN)
2.1 🖼️ 图像分类任务的实现
卷积神经网络(CNN)是一种专门用于处理图像数据的神经网络架构。CNN的核心思想是通过卷积操作提取图像的局部特征,并逐层学习图像中的抽象信息。CNN网络通常由卷积层、池化层和全连接层组成。
在图像分类任务中,CNN通过卷积层捕捉图像中的局部模式(如边缘、纹理等),通过池化层下采样以减少计算复杂度,并通过全连接层将提取的特征映射到分类结果。
以下是使用Keras实现一个简单的CNN用于图像分类的示例:
import tensorflow as tf
from tensorflow.keras import layers, models# 创建卷积神经网络模型
def create_cnn_model(input_shape, num_classes):model = models.Sequential()# 第一个卷积层和池化层model.add(layers.Conv2D(32, (3, 3), activation='relu', input_shape=input_shape))model.add(layers.MaxPooling2D((2, 2)))# 第二个卷积层和池化层model.add(layers.Conv2D(64, (3, 3), activation='relu'))model.add(layers.MaxPooling2D((2, 2)))# 第三个卷积层和池化层model.add(layers.Conv2D(64, (3, 3), activation='relu'))model.add(layers.MaxPooling2D((2, 2)))# 全连接层model.add(layers.Flatten())model.add(layers.Dense(64, activation='relu'))model.add(layers.Dense(num_classes, activation='softmax'))return model# 模型输入参数
input_shape = (64, 64, 3) # 输入为64x64的彩色图像
num_classes = 10 # 输出10个分类# 构建模型
cnn_model = create_cnn_model(input_shape, num_classes)
cnn_model.summary()
在这个代码中,首先构建了一个由三层卷积层组成的网络,每层卷积后接一个最大池化层,最后通过全连接层输出预测结果。这种结构在图像分类任务中表现良好,尤其适合大规模数据集的分类任务。
2.2 🚀 常用架构(LeNet、VGG、ResNet)
在卷积神经网络的发展过程中,出现了许多经典的架构,这些架构在解决复杂图像任务时取得了显著的成就。以下是几种常见的CNN架构:
LeNet是最早的卷积神经网络之一,广泛应用于手写数字识别任务。它由两层卷积层和两层全连接层组成,结构简单但有效。
def create_lenet(input_shape, num_classes):model = models.Sequential()model.add(layers.Conv2D(6, (5, 5), activation='tanh', input_shape=input_shape))model.add(layers.AveragePooling2D((2, 2)))model.add(layers.Conv2D(16, (5, 5), activation='tanh'))model.add(layers.AveragePooling2D((2, 2)))model.add(layers.Flatten())model.add(layers.Dense(120, activation='tanh'))model.add(layers.Dense(84, activation='tanh'))model.add(layers.Dense(num_classes, activation='softmax'))return model
VGG架构通过增加卷积层的深度来提升模型性能,VGG网络中的卷积层都是3x3卷积核,具有相同的结构,这种统一的设计使得网络易于扩展。
def create_vgg(input_shape, num_classes):model = models.Sequential()model.add(layers.Conv2D(64, (3, 3), activation='relu', padding='same', input_shape=input_shape))model.add(layers.Conv2D(64, (3, 3), activation='relu', padding='same'))model.add(layers.MaxPooling2D((2, 2)))# 重复卷积和池化操作# ...model.add(layers.Flatten())model.add(layers.Dense(4096, activation='relu'))model.add(layers.Dense(num_classes, activation='softmax'))return model
ResNet引入了残差连接(skip connection)以解决深度网络中的梯度消失问题,极大地提升了网络的学习能力。
from tensorflow.keras.applications import ResNet50# 使用预训练ResNet50模型
resnet_model = ResNet50(weights='imagenet', include_top=False, input_shape=input_shape)
resnet_model.summary()
每个架构都根据任务需求提供了不同的性能,研究者可以根据实际应用选择合适的模型。
3. 🔄 循环神经网络(RNN)
3.1 ⏳ 时间序列预测与NLP应用
循环神经网络(RNN)专门用于处理序列数据,在自然语言处理(NLP)和时间序列预测中表现优异。RNN的核心特点在于它能够保留前一时刻的信息,并将其传递到当前时刻,使得
网络具备了“记忆”能力。这种特性使RNN非常适合处理时间序列、文本等具有时序关系的数据。
RNN的主要变种包括LSTM(长短期记忆网络)和GRU(门控循环单元),它们通过特殊的结构来解决RNN中的长程依赖和梯度消失问题。
时间序列预测是RNN的重要应用之一。例如,使用RNN预测股票价格或天气变化等时间序列数据时,网络能够利用历史数据的模式进行预测。
import tensorflow as tf
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import LSTM, Dense# 创建LSTM模型
def create_lstm_model(input_shape):model = Sequential()model.add(LSTM(50, return_sequences=True, input_shape=input_shape))model.add(LSTM(50))model.add(Dense(1)) # 输出预测值return model# 模型输入参数
input_shape = (10, 1) # 输入为10个时间步的单变量数据
lstm_model = create_lstm_model(input_shape)
lstm_model.summary()
这个简单的LSTM网络可以用于时间序列预测,LSTM层通过记忆单元存储长时间的依赖关系,提升了模型对时序信息的理解。
在自然语言处理(NLP)中,RNN的应用十分广泛,特别是在文本生成、情感分析和机器翻译任务中,RNN能够通过学习上下文信息来捕捉文本中的深层含义。
以下是一个基于RNN的文本分类任务示例:
from tensorflow.keras.preprocessing.text import Tokenizer
from tensorflow.keras.preprocessing.sequence import pad_sequences
from tensorflow.keras.layers import Embedding, SimpleRNN# 模拟数据
texts = ["我喜欢深度学习", "机器学习很有趣", "神经网络是强大的工具"]
labels = [1, 0, 1]# 文本预处理
tokenizer = Tokenizer(num_words=1000)
tokenizer.fit_on_texts(texts)
sequences = tokenizer.texts_to_sequences(texts)
padded_sequences = pad_sequences(sequences, maxlen=5)# 创建RNN模型
def create_rnn_model(input_length):model = Sequential()model.add(Embedding(input_dim=1000, output_dim=64, input_length=input_length))model.add(SimpleRNN(64))model.add(Dense(1, activation='sigmoid'))return modelinput_length = 5 # 文本序列长度
rnn_model = create_rnn_model(input_length)
rnn_model.compile(optimizer='adam', loss='binary_crossentropy', metrics=['accuracy'])
rnn_model.summary()
这个例子展示了如何使用RNN进行文本分类。RNN通过逐步处理文本中的单词序列,捕捉上下文之间的关系,并最终输出分类结果。
RNN及其变种在时间序列和文本数据的处理上展现了卓越的能力,通过调整网络结构,可以实现不同复杂度的任务需求。
相关文章:
Python深度学习:从神经网络到循环神经网络
Python深度学习:从神经网络到循环神经网络 目录 ✨ 神经网络基础 1.1 🔍 前向传播与反向传播🎨 卷积神经网络(CNN) 2.1 🖼️ 图像分类任务的实现 2.2 🚀 常用架构(LeNet、VGG、Res…...
C++输⼊输出
1.<iostream> 是 Input Output Stream 的缩写,是标准的输⼊、输出流库,定义了标准的输⼊、输 出对象 2.std::cin 是 istream 类的对象,它主要⾯向窄字符(narrow characters (of type char))的标准输 ⼊流。 3…...
卡码网KamaCoder 117. 软件构建
题目来源:117. 软件构建 C题解(来源代码随想录):拓扑排序:给出一个 有向图,把这个有向图转成线性的排序。拓扑排序也是图论中判断有向无环图的常用方法。 拓扑排序的过程,其实就两步࿱…...
Acwing 线性DP
状态转移方程呈现出一种线性的递推形式的DP,我们将其称为线性DP。 Acwing 898.数字三角形 实现思路: 对这个三角形的数字进行编号,状态表示依然可以用二维表示,即f(i,j),i表示横坐标(横线),j表…...
Docker面试-24年
1、Docker 是什么? Docker一个开源的应用容器引擎,是实现容器技术的一种工具,让开发者可以打包他们的应用以及环境到一个镜像中,可以快速的发布到任何流行的操作系统上。 2、Docker的三大核心是什么? 镜像:Docker的…...
ubuntu 安装k8s
#关闭 Swap 内存,配置完成建议重启一下 nano /etc/fstab #注释下面相似的一行 #/swapfile none swap sw 0 0 #重启 reboot#部属k8s apt update && apt install -y apt-transport-https 下载 gpg 密钥 curl https://mi…...
No.4 笔记 | 探索网络安全:揭开Web世界的隐秘防线
在这个数字时代,网络安全无处不在。了解Web安全的基本知识,不仅能保护我们自己,也能帮助我们在技术上更进一步。让我们一起深入探索Web安全的世界,掌握那些必备的安全知识! 1. 客户端与WEB应用安全 前端漏洞࿱…...
spring揭秘24-springmvc02-5个重要组件
文章目录 【README】【1】HanderMapping-处理器映射容器【1.1】HanderMapping实现类【1.1.1】SimpleUrlHandlerMapping 【2】Controller(二级控制器)【2.1】AbstractController抽象控制器(控制器基类) 【3】ModelAndView(模型与视…...
关键字:register
1.铺垫 1.1 计算集中具有存储能力的硬件:cpu中的寄存器、cache,内存,硬盘等 1.2离cpu越近的存储硬件,效率越高,单价成本越贵;离cpu越远的存储硬件,效率越低,单价成本越便宜&#x…...
力扣 简单 110.平衡二叉树
文章目录 题目介绍解法 题目介绍 解法 平衡二叉树:任意节点的左子树和右子树的高度之差的绝对值不超过 1 //利用递归方法自顶向下判断以每个节点为根节点的左右子树的最大深度是否大于1 class Solution {public boolean isBalanced(TreeNode root) {if(root null){return tr…...
基于深度学习的代码优化
基于深度学习的代码优化是一种使用深度学习技术来提升编程代码性能、减少运行时间或资源消耗的方式。通过模型学习大量代码的特征和结构,深度学习可以帮助自动化地识别和应用优化策略。以下是一些关键应用领域: 编译器优化:深度学习模型可以用…...
汽车电气系统中KL30、KL15、KL50、KLR、KL31、KL87、KL75的作用
目录 1、KL30 (Battery Positive Terminal) 2、KL15 (Ignition Switch, Positive) 3、KL50 (Starter Motor Terminal) 4、KLR (Ignition-Off Draw) 5、KL31 (Ground) 6、KL87 (Relay Output) 7、KL75 (Accessory) 在汽车电气系统中,KL系列的术语起源于德国&a…...
随笔(四)——代码优化
文章目录 前言1.原本代码2.新增逻辑3.优化逻辑 前言 原逻辑:后端data数据中返回数组,数组中有两个对象,一个是属性指标,一个是应用指标,根据这两个指标展示不同的多选框 1.原本代码 getIndicatorRange(indexReportLi…...
安装管理K8S的开源项目KubeClipper介绍
安装管理K8S的开源项目KubeClipper介绍 1. 概述 KubeClipper是九州云开源的一个图形化界面 Kubernetes 多集群管理工具,旨在提供易使用、易运维、极轻量、生产级的 Kubernetes 多集群全生命周期管理服务。让运维工程师从繁复的配置和晦涩的命令行中解放出来&#…...
北交大研究突破:塑料光纤赋能低成本无摄像头AR/VR眼动追踪技术
北交大研究:探索无摄像头低成本AR/VR眼动追踪新路径 在AR/VR技术领域,眼动追踪作为一项关键技术,对于提升用户体验、优化渲染效率具有重要意义。然而,传统的眼动追踪方案多依赖于高成本的摄像头,这不仅增加了设备的制造…...
算法题总结(七)——哈希表
当我们遇到了要快速判断一个元素是否出现集合里的时候,就要考虑哈希法 242、有效地字母异位词 给定两个字符串 s 和 t ,编写一个函数来判断 t 是否是 s 的字母异位词。 注意:若 s 和 t 中每个字符出现的次数都相同,则称 s 和 t…...
PS批量执行动作,ps批量修改图片大小,并修改文件的类型
PS批量执行动作,ps批量修改图片大小,并修改文件的类型 修改格式,文件类型为:jpg,psd,tiff,并修改大小 打开文件(也可以不打开,) 点击文件>脚本>文件…...
CentOS 替换 yum源 经验分享
视频教程在bilibili:CentOS 替换 yum源 经验分享_哔哩哔哩_bilibili问题原因 解决方法 1. 进入镜像目录 [rootlocalhost ~]# cd /etc/yum.repos.d/ 2.备份文件 [rootlocalhost yum.repos.d]# rename repo bak * 3.寻找阿里镜像源复制 https://developer.aliyun.com/mirror/ …...
Elasticsearch基础_2.数据类型
文章目录 一、基本的数据类型1.1、keyword1.2、text1.3、数值类型1.4、布尔类型1.5、时间类型 二、复杂的数据类型三、字段映射 一、基本的数据类型 1.1、keyword keyword类型是不进行切分的字符串类型。这里的“不进行切分”指的是:在索引时,对keyword…...
docker快速安装ELK
一、创建elk目录 创建/elk/elasticsearch/data/目录 mkdir -p /usr/local/share/elk/elasticsearch/data/ 创建/elk/logstash/pipeline/目录 mkdir -p /usr/local/share/elk/logstash/pipeline/ 创建/elk/kibana/conf/目录 mkdir -p /usr/local/share/elk/kibana/conf/ 二、创建…...
docker详细操作--未完待续
docker介绍 docker官网: Docker:加速容器应用程序开发 harbor官网:Harbor - Harbor 中文 使用docker加速器: Docker镜像极速下载服务 - 毫秒镜像 是什么 Docker 是一种开源的容器化平台,用于将应用程序及其依赖项(如库、运行时环…...
在rocky linux 9.5上在线安装 docker
前面是指南,后面是日志 sudo dnf config-manager --add-repo https://download.docker.com/linux/centos/docker-ce.repo sudo dnf install docker-ce docker-ce-cli containerd.io -y docker version sudo systemctl start docker sudo systemctl status docker …...
uniapp微信小程序视频实时流+pc端预览方案
方案类型技术实现是否免费优点缺点适用场景延迟范围开发复杂度WebSocket图片帧定时拍照Base64传输✅ 完全免费无需服务器 纯前端实现高延迟高流量 帧率极低个人demo测试 超低频监控500ms-2s⭐⭐RTMP推流TRTC/即构SDK推流❌ 付费方案 (部分有免费额度&#x…...
Linux-07 ubuntu 的 chrome 启动不了
文章目录 问题原因解决步骤一、卸载旧版chrome二、重新安装chorme三、启动不了,报错如下四、启动不了,解决如下 总结 问题原因 在应用中可以看到chrome,但是打不开(说明:原来的ubuntu系统出问题了,这个是备用的硬盘&a…...
NLP学习路线图(二十三):长短期记忆网络(LSTM)
在自然语言处理(NLP)领域,我们时刻面临着处理序列数据的核心挑战。无论是理解句子的结构、分析文本的情感,还是实现语言的翻译,都需要模型能够捕捉词语之间依时序产生的复杂依赖关系。传统的神经网络结构在处理这种序列依赖时显得力不从心,而循环神经网络(RNN) 曾被视为…...
Java多线程实现之Thread类深度解析
Java多线程实现之Thread类深度解析 一、多线程基础概念1.1 什么是线程1.2 多线程的优势1.3 Java多线程模型 二、Thread类的基本结构与构造函数2.1 Thread类的继承关系2.2 构造函数 三、创建和启动线程3.1 继承Thread类创建线程3.2 实现Runnable接口创建线程 四、Thread类的核心…...
让回归模型不再被异常值“带跑偏“,MSE和Cauchy损失函数在噪声数据环境下的实战对比
在机器学习的回归分析中,损失函数的选择对模型性能具有决定性影响。均方误差(MSE)作为经典的损失函数,在处理干净数据时表现优异,但在面对包含异常值的噪声数据时,其对大误差的二次惩罚机制往往导致模型参数…...
技术栈RabbitMq的介绍和使用
目录 1. 什么是消息队列?2. 消息队列的优点3. RabbitMQ 消息队列概述4. RabbitMQ 安装5. Exchange 四种类型5.1 direct 精准匹配5.2 fanout 广播5.3 topic 正则匹配 6. RabbitMQ 队列模式6.1 简单队列模式6.2 工作队列模式6.3 发布/订阅模式6.4 路由模式6.5 主题模式…...
CSS | transition 和 transform的用处和区别
省流总结: transform用于变换/变形,transition是动画控制器 transform 用来对元素进行变形,常见的操作如下,它是立即生效的样式变形属性。 旋转 rotate(角度deg)、平移 translateX(像素px)、缩放 scale(倍数)、倾斜 skewX(角度…...
stm32wle5 lpuart DMA数据不接收
配置波特率9600时,需要使用外部低速晶振...
