当前位置: 首页 > news >正文

【在Linux世界中追寻伟大的One Piece】进程信号

目录

1 -> 信号入门

1.1 -> 生活角度的信号

1.2 -> 技术应用角度的信号

1.3 -> 注意

2 -> 信号的概念

2.1 -> 用kill -l命令可以查看系统定义的信号列表

2.2 -> 信号处理常见方式

3 -> 产生信号

3.1 -> Core Dump

3.2 -> 调用系统函数向进程发信号

3.3 -> 由软件条件产生信号

3.4 -> 硬件异常产生信号


1 -> 信号入门

1.1 -> 生活角度的信号

  • 你在网上买了很多件商品,再等待不同商品快递的到来。但即便快递没有到来,你也知道快递来临时,你该怎么处理快递。也就是你能“识别快递”。
  • 当快递员到了你楼下,你也收到快递到来的通知,但是你正在打游戏,需5min之后才能去取快递。那么在在这5min之内,你并没有下去去取快递,但是你是知道有快递到来了。也就是取快递的行为并不是一定要立即执行,可以理解成“在合适的时候去取”。
  • 在收到通知,再到你拿到快递期间,是有一个时间窗口的,在这段时间,你并没有拿到快递,但是你知道有一个快递已经来了。本质上是你“记住了有一个快递要去取”。
  • 当你时间合适,顺利拿到快递之后,就要开始处理快递了。而处理快递一般方式有三种:
    • 执行默认动作(幸福的打开快递,使用商品)。
    • 执行自定义动作(快递是零食,你要送给你的女朋友)。
    • 忽略快递(快递拿上来之后,扔掉床头,继续开一把游戏)。
  • 快递到来的整个过程,对你来讲是异步的,你不能准确断定快递员什么时候给你打电话。

1.2 -> 技术应用角度的信号

1. 用户输入命令,在Shell下启动一个前台进程。

  • 用户按下Ctrl-C,这个键盘输入产生一个硬件中断,被OS获取,解释成信号,发送给目标前台进程。
  • 前台进程因为收到信号,进而引起进程退出。
[hg@localhost code_test]$ cat sig.c
#include <stdio.h>
int main()
{
while(1){
printf("I am a process, I am waiting signal!\n");
sleep(1);
}
}
[hg@localhost code_test]$ ./sig
I am a process, I am waiting signal!
I am a process, I am waiting signal!
I am a process, I am waiting signal!
^C
[hg@localhost code_test]$
  • 进程就是你,操作系统就是快递员,信号就是快递。

1.3 -> 注意

  • Ctrl-C产生的信号只能发给前台进程。一个命令后面加个&可以放到后台运行,这样Shell不必等待进程结束就可以接受新的命令,启动新的进程。
  • Shell可以同时运行一个前台进程和任意多个后台进程,只有前台进程才能接到像Ctrl-C这种控制键产生的信号。
  • 前台进程在运行过程中用户随时可能按下Ctrl-C而产生一个信号,也就是说该进程的用户空间代码执行到任何地方都有可能收到SIGINT信号而终止,所以信号相对于进程的控制流程来说是异步(Asynchronous)的。

2 -> 信号的概念

信号是用来传递信息的物理量,它可以是电信号、声波、光信号等多种形式。在通信和控制系统中,信号作为信息的载体,通过特定的媒介从发送端传输到接收端。信号可以携带声音、图像、数据等多种类型的信息。

信号是进程之间事件异步通知的一种方式,属于软中断。

2.1 -> 用kill -l命令可以查看系统定义的信号列表

  • 每个信号都有一个编号和一个宏定义名称,这些宏定义可以在signal.h中找到,例如其中有定义 #define SIGINT 2。
  • 编号34以上的是实时信号,只讨论编号34以下的信号,不讨论实时信号。这些信号各自在什么条件下产生,默认的处理动作是什么,在signal(7)中都有详细说明: man 7 signal。

2.2 -> 信号处理常见方式

可选的处理动作有以下三种:

  1. 忽略此信号。
  2. 执行该信号的默认处理动作。
  3. 提供一个信号处理函数,要求内核在处理该信号时切换到用户态执行这个处理函数,这种方式称为捕捉(Catch)一个信号。

3 -> 产生信号

SIGINT的默认处理动作是终止进程,SIGQUIT的默认处理动作是终止进程并且Core Dump。

3.1 -> Core Dump

首先解释什么是Core Dump。当一个进程要异常终止时,可以选择把进程的用户空间内存数据全部保存到磁盘上,文件名通常是core,这叫做Core Dump。进程异常终止通常是因为有Bug,比如非法内存访问导致段错误,事后可以用调试器检查core文件以查清错误原因,这叫做Post-mortem Debug(事后调试)。一个进程允许产生多大的core文件取决于进程的Resource Limit(这个信息保存 在PCB中)。默认是不允许产生core文件的,因为core文件中可能包含用户密码等敏感信息,不安全。在开发调试阶段可以用ulimit命令改变这个限制,允许产生core文件。 首先用ulimit命令改变Shell进程的Resource Limit,允许core文件最大为1024K: $ ulimit -c1024。

然后写一个死循环程序。

前台运行这个程序,然后在终端键入Ctrl-C或Ctrl-\:

ulimit命令改变了Shell进程的Resource Limit,test进程的PCB由Shell进程复制而来,所以也具有和Shell进程相同的Resource Limit值,这样就可以产生Core Dump了。

3.2 -> 调用系统函数向进程发信号

首先在后台执行死循环程序,然后用kill命令给它发SIGSEGV信号。

  • 4568是test进程的id。之所以要再次回车才显示Segmentation fault,是因为在4568进程终止掉之前已经回到了Shell提示符等待用户输入下一条命令,Shell不希望Segmentation fault信息和用户的输入交错在一起,所以等用户输入命令之后才显示。
  • 指定发送某种信号的kill命令可以有多种写法,上面的命令还可以写成kill -SIGSEGV 4568或 kill -11 4568, 11是信号SIGSEGV的编号。以往遇 到的段错误都是由非法内存访问产生的,而这个程序本身没错,给它发SIGSEGV也能产生段错误。

kill命令是调用kill函数实现的。kill函数可以给一个指定的进程发送指定的信号。raise函数可以给当前进程发送指定的信号(自己给自己发信号)。

#include <signal.h>
int kill(pid_t pid, int signo);
int raise(int signo);
这两个函数都是成功返回0,错误返回-1。

abort函数使当前进程接收到信号而异常终止。

#include <stdlib.h>
void abort(void);
就像exit函数一样,abort函数总是会成功的,所以没有返回值。

3.3 -> 由软件条件产生信号

SIGPIPE是一种由软件条件产生的信号。

#include <unistd.h>
unsigned int alarm(unsigned int seconds);
调用alarm函数可以设定一个闹钟,也就是告诉内核在seconds秒之后给当前进程发SIGALRM信号,该信号的默认处理动作是终止当前进程。

这个函数的返回值是0或者是以前设定的闹钟时间还余下的秒数。打个比方,某人要小睡一觉,设定闹钟为30分钟之后响,20分钟后被人吵醒了,还想多睡一会儿,于是重新设定闹钟为15分钟之后响,“以前设定的闹钟时间还余下的时间”就是10分钟。如果seconds值为0,表示取消以前设定的闹钟,函数的返回值仍然是以前设定的闹钟时间还余下的秒数。

3.4 -> 硬件异常产生信号

硬件异常被硬件以某种方式被硬件检测到并通知内核,然后内核向当前进程发送适当的信号。例如当前进程执行了除以0的指令,CPU的运算单元会产生异常,内核将这个异常解释为SIGFPE信号发送给进程。再比如当前进程访问了非法内存地址,MMU会产生异常,内核将这个异常解释为SIGSEGV信号发送给进程。


感谢各位大佬支持!!!

互三啦!!!

相关文章:

【在Linux世界中追寻伟大的One Piece】进程信号

目录 1 -> 信号入门 1.1 -> 生活角度的信号 1.2 -> 技术应用角度的信号 1.3 -> 注意 2 -> 信号的概念 2.1 -> 用kill -l命令可以查看系统定义的信号列表 2.2 -> 信号处理常见方式 3 -> 产生信号 3.1 -> Core Dump 3.2 -> 调用系统函数…...

MySQL中NULL值是否会影响索引的使用

MySQL中NULL值是否会影响索引的使用 为何写这一篇文章 &#x1f42d;&#x1f42d;在面试的时候被问到NULL值是否会走索引的时候&#xff0c;感到有点不理解&#xff0c;于是事后就有了这篇文章 问题&#xff1a; 为name建立索引&#xff0c;name可以为空select * from user …...

Chrome 浏览器:现代网络浏览的先锋

Chrome 浏览器&#xff1a;现代网络浏览的先锋 Chrome 浏览器&#xff0c;由谷歌公司开发的一款快速、简单且安全的网络浏览器&#xff0c;自2008年发布以来&#xff0c;已经成为全球最受欢迎的浏览器之一。本文将深入探讨 Chrome 浏览器的特点、功能、发展历程以及其对现代网…...

蓝牙定位的MATLAB仿真程序(基于信号强度,平面内的定位,四个蓝牙基站)

这段代码通过RSSI信号强度实现了蓝牙定位,展示了如何使用锚点位置和测量的信号强度来估计未知点的位置。它涵盖了信号衰减模型、距离计算和最小二乘法估计等基本概念。通过图形化输出,用户可以直观地看到真实位置与估计位置的关系。 文章目录 蓝牙定位原理蓝牙定位的原理优缺…...

解决docker一直出现“=> ERROR [internal] load metadata for docker.io/library/xxx“的问题

docker拉取镜像时报错&#xff0c;除标题外&#xff0c;还报如下信息 此时想到是不是拉取超时呢&#xff0c;然后配置了一下docker拉取镜像源 vm /etc/docker/daemon.json { "registry-mirrors": ["https://jq794zz5.mirror.aliyuncs.com"] } # 重新加载配…...

Django学习笔记五:templates使用详解

Django的模板系统是一个强大的工具&#xff0c;用于将动态数据渲染到HTML页面中。以下是Django模板系统的详细用法&#xff1a; 模板的基本概念 Django模板使用一个特殊的语法来插入变量、标签和过滤器。 创建模板 创建模板目录&#xff1a;在你的Django应用中创建一个名为…...

PriorityQueue分析

概述 PriorityQueue&#xff0c;优先级队列&#xff0c;一种特殊的队列&#xff0c;作用是能保证每次取出的元素都是队列中权值最小的&#xff08;Java的优先队列每次取最小元素&#xff0c;C的优先队列每次取最大元素&#xff09;。元素大小的评判可以通过元素本身的自然顺序…...

Hive数仓操作(六)

一、 Hive 分区表 Hive 的分区表通过在 HDFS 中以不同的目录存储不同的分区数据&#xff0c;来提高查询性能并减少数据扫描量。分区表可以根据特定的列&#xff08;如 性别 列的男/女&#xff09;将数据划分为多个部分&#xff0c;使得查询时只需要扫描相关的分区&#xff0c;…...

centos7安装配置python3环境

1、wget https://www.python.org/ftp/python/3.11.2/Python-3.11.2.tgz 2、安装python依赖环境 切换到root用户&#xff0c;然后执行下面命令&#xff1a; 3、安装gcc&#xff0c;用于后续安装Python时编译源码&#xff1a; yum install gcc -y 4、安装Python3相关依赖&#…...

用 LoRA 微调 Stable Diffusion:拆开炼丹炉,动手实现你的第一次 AI 绘画

总得拆开炼丹炉看看是什么样的。这篇文章将带你从代码层面一步步实现 AI 文本生成图像&#xff08;Text-to-Image&#xff09;中的 LoRA 微调过程&#xff0c;你将&#xff1a; 了解 Trigger Words&#xff08;触发词&#xff09;到底是什么&#xff0c;以及它们如何影响生成结…...

手机实时提取SIM卡打电话的信令声音-(题外、插播一条广告)

手机实时提取SIM卡打电话的信令声音-(题外、插播一条广告) 前言 在去年的差不多这个时候&#xff0c;我们做了一遍外置配件的选型&#xff0c;筛选过滤了一批USB蓝牙配件和type-c转usb的模块。详情可参考《外置配件的电商价格和下载链接的选型.docx》一文&#xff1a;蓝牙电话…...

Linux基于CentOS学习【进程状态】【进程优先级】【调度与切换】【进程挂起】【进程饥饿】

目录 进程状态 状态决定了什么 进程等待方式——队列 进程状态的表现 挂起状态 基于阻塞的挂起——阻塞挂起 swap分区 进程状态表示 Z僵尸状态 进程的优先级 什么是进程的优先级 为什么会有进程的优先级 进程饥饿 Linux的调度与切换 切换 调度 queue [ 140 ]&am…...

Golang | Leetcode Golang题解之第456题132模式

题目&#xff1a; 题解&#xff1a; func find132pattern(nums []int) bool {candidateI, candidateJ : []int{-nums[0]}, []int{-nums[0]}for _, v : range nums[1:] {idxI : sort.SearchInts(candidateI, 1-v)idxJ : sort.SearchInts(candidateJ, -v)if idxI < idxJ {ret…...

回归预测|基于哈里斯鹰优化最小二乘支持向量机的数据回归预测Matlab程序HHO-LSSVM 多特征输入单输出含基础程序

回归预测|基于哈里斯鹰优化最小二乘支持向量机的数据回归预测Matlab程序HHO-LSSVM 多特征输入单输出含基础程序 文章目录 一、基本原理一、基本原理二、HHO-LSSVM的流程三、优缺点四、应用场景 二、实验结果三、核心代码四、代码获取五、总结 一、基本原理 HHO-LSSVM回归预测结…...

【Android 源码分析】Activity生命周期之onStop-1

忽然有一天&#xff0c;我想要做一件事&#xff1a;去代码中去验证那些曾经被“灌输”的理论。                                                                                  – 服装…...

【Unity】本地化实现

个人向笔记。 1 前言 记录一下自己的本地化实现思路&#xff0c;暂时只讲本文的本地化实现。 2 文本本地化方案-个人 本地化实现是基于Luban的。自己使用Luban实现了一个“配置表模块”&#xff0c;又实现了一个“全局配置模块”&#xff0c;之后再基于这两个模块实现了“文本…...

Django一分钟:在Django中怎么存储树形结构的数据,DRF校验递归嵌套模型的替代方案

引言 在开发过程中我们可能需要这样的树形结构: [{"data": {"name": "牛奶"},"children": [{"data": {"name": "蒙牛"}, },{"data": {"name": "伊利"}, }]},{"da…...

【Docker从入门到进阶】06.常见问题与解决方案 07.总结与资源

6. 常见问题与解决方案 在使用Docker进行开发和部署过程中&#xff0c;可能会遇到各种问题。以下是一些常见问题及其解决方案&#xff1a; 容器启动失败和调试 在使用 Docker 时&#xff0c;容器启动失败或立即退出可能会导致一定的困扰&#xff0c;以下是进一步深入解决该问…...

快速排序的非递归实现:借助栈实现、借助队列实现

目录 用栈实现快速排序 1.用栈实现非递归快速排序的思路步骤 1.1.思路步骤 2.用栈实现非递归快速排序的代码 3.用栈实现非递归快速排序的整个工程 3.1.QuickSortNonR.h 3.2.QuickSortNonR.c 3.3.Stack.h 3.4.Stack.c 用队列实现非递归快速排序 1.用队列实现非递归快…...

Finops成本优化企业实践-可视化篇

引言&#xff1a;上一章讨论了finops的一些方法论&#xff0c;笔者在拿到finops官方认证finops-engineer certificate之后&#xff0c;将方法论运用到所在项目组中&#xff0c;并于今年完成了40%的费用节省。在此将这些实践方法总结沉淀&#xff0c;与大家分享。实践包括三篇&a…...

基于FPGA的PID算法学习———实现PID比例控制算法

基于FPGA的PID算法学习 前言一、PID算法分析二、PID仿真分析1. PID代码2.PI代码3.P代码4.顶层5.测试文件6.仿真波形 总结 前言 学习内容&#xff1a;参考网站&#xff1a; PID算法控制 PID即&#xff1a;Proportional&#xff08;比例&#xff09;、Integral&#xff08;积分&…...

【WiFi帧结构】

文章目录 帧结构MAC头部管理帧 帧结构 Wi-Fi的帧分为三部分组成&#xff1a;MAC头部frame bodyFCS&#xff0c;其中MAC是固定格式的&#xff0c;frame body是可变长度。 MAC头部有frame control&#xff0c;duration&#xff0c;address1&#xff0c;address2&#xff0c;addre…...

k8s从入门到放弃之Ingress七层负载

k8s从入门到放弃之Ingress七层负载 在Kubernetes&#xff08;简称K8s&#xff09;中&#xff0c;Ingress是一个API对象&#xff0c;它允许你定义如何从集群外部访问集群内部的服务。Ingress可以提供负载均衡、SSL终结和基于名称的虚拟主机等功能。通过Ingress&#xff0c;你可…...

质量体系的重要

质量体系是为确保产品、服务或过程质量满足规定要求&#xff0c;由相互关联的要素构成的有机整体。其核心内容可归纳为以下五个方面&#xff1a; &#x1f3db;️ 一、组织架构与职责 质量体系明确组织内各部门、岗位的职责与权限&#xff0c;形成层级清晰的管理网络&#xf…...

使用van-uploader 的UI组件,结合vue2如何实现图片上传组件的封装

以下是基于 vant-ui&#xff08;适配 Vue2 版本 &#xff09;实现截图中照片上传预览、删除功能&#xff0c;并封装成可复用组件的完整代码&#xff0c;包含样式和逻辑实现&#xff0c;可直接在 Vue2 项目中使用&#xff1a; 1. 封装的图片上传组件 ImageUploader.vue <te…...

【Go】3、Go语言进阶与依赖管理

前言 本系列文章参考自稀土掘金上的 【字节内部课】公开课&#xff0c;做自我学习总结整理。 Go语言并发编程 Go语言原生支持并发编程&#xff0c;它的核心机制是 Goroutine 协程、Channel 通道&#xff0c;并基于CSP&#xff08;Communicating Sequential Processes&#xff0…...

五子棋测试用例

一.项目背景 1.1 项目简介 传统棋类文化的推广 五子棋是一种古老的棋类游戏&#xff0c;有着深厚的文化底蕴。通过将五子棋制作成网页游戏&#xff0c;可以让更多的人了解和接触到这一传统棋类文化。无论是国内还是国外的玩家&#xff0c;都可以通过网页五子棋感受到东方棋类…...

高考志愿填报管理系统---开发介绍

高考志愿填报管理系统是一款专为教育机构、学校和教师设计的学生信息管理和志愿填报辅助平台。系统基于Django框架开发&#xff0c;采用现代化的Web技术&#xff0c;为教育工作者提供高效、安全、便捷的学生管理解决方案。 ## &#x1f4cb; 系统概述 ### &#x1f3af; 系统定…...

JDK 17 序列化是怎么回事

如何序列化&#xff1f;其实很简单&#xff0c;就是根据每个类型&#xff0c;用工厂类调用。逐个完成。 没什么漂亮的代码&#xff0c;只有有效、稳定的代码。 代码中调用toJson toJson 代码 mapper.writeValueAsString ObjectMapper DefaultSerializerProvider 一堆实…...

Java中HashMap底层原理深度解析:从数据结构到红黑树优化

一、HashMap概述与核心特性 HashMap作为Java集合框架中最常用的数据结构之一&#xff0c;是基于哈希表的Map接口非同步实现。它允许使用null键和null值&#xff08;但只能有一个null键&#xff09;&#xff0c;并且不保证映射顺序的恒久不变。与Hashtable相比&#xff0c;Hash…...