探索Prompt Engineering:开启大型语言模型潜力的钥匙
前言
什么是Prompt?Prompt Engineering?
Prompt可以理解为向语言模型提出的问题或者指令,它是激发模型产生特定类型响应的“触发器”。
Prompt Engineering,即提示工程,是近年来随着大型语言模型(LLM,Large Language Models)的发展而兴起的一个重要概念
接下来,让我们学习如何使用Prompt Engineering。
1. 初始化项目:
使用npm init -y命令在终端(快捷键Ctrl+`)快速创建一个package.json文件,这是Node.js项目的配置文件。
- npm init -y
2. 安装OpenAI SDK:
通过npm i openai命令安装OpenAI提供的官方SDK。这一步骤不仅会在你的项目目录中下载必要的库文件,还会自动在package.json的dependencies字段添加一条记录,表明该项目依赖于openai包。
- npm i openai
3. 创建.env文件
利用dotenv库(通过dotenv.config()方法)可以将API Key等敏感信息存储在项目根目录下的.env文件中。这样可以避免将密钥直接写入源代码,减少泄露风险。
- OPENAI_API_KEY =YOUR_API_KEY
4.创建main.js
① 环境变量配置
require('dotenv').config();
// 环境变量
// console.log(process.env, '------');
② 导入OpenAI模块并创建实例
const OpenAI = require('openai')//导入模块
// 创建实例
const client = new OpenAI({apiKey: process.env.OPENAI_API_KEY,baseURL: 'https://api.chatanywhere.tech/v1'
})
③ 创建异步函数getChatResponse
// 模型和prompt作为参数
const getChatResponse = async function (model, prompt) {// 向指定模型发送请求const response = await client.chat.completions.create({model: model, // 适合聊天的模型 很多种messages: [{role: 'user',content: prompt}]})返回// 第一条消息的content部分return response.choices[0].message.content}
④ 主函数main()
- 第一个prompt是一个关于总结文本的请求,要求将一个较长的段落总结成少于20字的一句话。
- 第二个prompt是一个角色扮演场景,要求模型以一致的风格回答一个关于“教我韧性”的问题,模仿对孩子的教导。
async function main() {// es6 模板字符串 比"" '' 动态解析 // 多行 特别适合详细的设置prompt let text = `您应该提供尽可能清晰、具体的指示,以表达您希望模型执行的任务\这将引导模型朝向所需的输出,并降低收到无关或不正确响应的可能性。\不要将写清晰的提示词与写简短的提示词混淆。\在许多情况下,更长的提示词可以为模型提供更多的清晰度和上下文信息,从而导致更详细和相关的输出。`// llm 的 nlp 总结能力// 转译let prompt = `把用三个反引号括起来的文本总结成一句话,20字以内。\`\`\`${text}\`\`\``const response = await getChatResponse('gpt-3.5-turbo', prompt)console.log(response);let prompt2 = `您的任务是以一致的风格回答问题。<孩子>: 教我耐心。<祖父母>: 挖出最深峡谷的河流源于一处不起眼的泉眼;最宏伟的交响乐从单一的音符开始;最复杂的挂毯以一根孤独的线开始编织。<孩子>: 教我韧性。`const response2 = await getChatResponse('gpt-3.5-turbo', prompt2);console.log(response2)
}
⑤ 运行
调用main()函数运行程序。
main()
总结
把时间花在设计prompt上,提供清晰、明确的提示,同时利用dotenv.config()方法存储api密码,注意将重复使用的代码进行封装,拒绝重复复制粘贴。养成良好的编程习惯并结合好prompt进行编程。

大模型&AI产品经理如何学习
求大家的点赞和收藏,我花2万买的大模型学习资料免费共享给你们,来看看有哪些东西。
1.学习路线图

第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;
第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;
第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;
第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;
第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;
第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;
第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。
2.视频教程
网上虽然也有很多的学习资源,但基本上都残缺不全的,这是我自己整理的大模型视频教程,上面路线图的每一个知识点,我都有配套的视频讲解。


(都打包成一块的了,不能一一展开,总共300多集)
因篇幅有限,仅展示部分资料,需要点击下方图片前往获取
3.技术文档和电子书
这里主要整理了大模型相关PDF书籍、行业报告、文档,有几百本,都是目前行业最新的。

4.LLM面试题和面经合集
这里主要整理了行业目前最新的大模型面试题和各种大厂offer面经合集。

👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;
• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;
• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;
• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。

1.AI大模型学习路线图
2.100套AI大模型商业化落地方案
3.100集大模型视频教程
4.200本大模型PDF书籍
5.LLM面试题合集
6.AI产品经理资源合集
👉获取方式:
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓

相关文章:
探索Prompt Engineering:开启大型语言模型潜力的钥匙
前言 什么是Prompt?Prompt Engineering? Prompt可以理解为向语言模型提出的问题或者指令,它是激发模型产生特定类型响应的“触发器”。 Prompt Engineering,即提示工程,是近年来随着大型语言模型(LLM,Larg…...
滚雪球学Oracle[3.3讲]:数据定义语言(DDL)
全文目录: 前言一、约束的高级使用1.1 主键(Primary Key)案例演示:定义主键 1.2 唯一性约束(Unique)案例演示:定义唯一性约束 1.3 外键(Foreign Key)案例演示:…...
ssrf学习(ctfhub靶场)
ssrf练习 目录 ssrf类型 漏洞形成原理(来自网络) 靶场题目 第一题(url探测网站下文件) 第二关(使用伪协议) 关于http和file协议的理解 file协议 http协议 第三关(端口扫描)…...
ElasticSearch之网络配置
对官方文档Networking的阅读笔记。 ES集群中的节点,支持处理两类通信平面 集群内节点之间的通信,官方文档称之为transport layer。集群外的通信,处理客户端下发的请求,比如数据的CRUD,检索等,官方文档称之…...
【C语言进阶】系统测试与调试
1. 引言 在开始本教程的深度学习之前,我们需要了解整个教程的目标及其结构,以及为何进阶学习是提升C语言技能的关键。 目标和结构: 教程目标:本教程旨在通过系统化的学习,从单元测试、系统集成测试到调试技巧…...
多个单链表的合成
建立两个非递减有序单链表,然后合并成一个非递增有序的单链表。 注意:建立非递减有序的单链表,需要采用创建单链表的算法 输入格式: 1 9 5 7 3 0 2 8 4 6 0 输出格式: 9 8 7 6 5 4 3 2 1 输入样例: 在这里给出一组输入。例如…...
『建议收藏』ChatGPT Canvas功能进阶使用指南!
大家好,我是木易,一个持续关注AI领域的互联网技术产品经理,国内Top2本科,美国Top10 CS研究生,MBA。我坚信AI是普通人变强的“外挂”,专注于分享AI全维度知识,包括但不限于AI科普,AI工…...
Ollama 运行视觉语言模型LLaVA
Ollama的LLaVA(大型语言和视觉助手)模型集已更新至 1.6 版,支持: 更高的图像分辨率:支持高达 4 倍的像素,使模型能够掌握更多细节。改进的文本识别和推理能力:在附加文档、图表和图表数据集上进…...
gdb 调试 linux 应用程序的技巧介绍
使用 gdb 来调试 Linux 应用程序时,可以显著提高开发和调试的效率。gdb(GNU 调试器)是一款功能强大的调试工具,适用于调试各类 C、C 程序。它允许我们在运行程序时检查其状态,设置断点,跟踪变量值的变化&am…...
Java项目实战II基于Java+Spring Boot+MySQL的房产销售系统(源码+数据库+文档)
目录 一、前言 二、技术介绍 三、系统实现 四、文档参考 五、核心代码 六、源码获取 全栈码农以及毕业设计实战开发,CSDN平台Java领域新星创作者 一、前言 随着房地产市场的蓬勃发展,房产销售业务日益复杂,传统的手工管理方式已难以满…...
aws(学习笔记第一课) AWS CLI,创建ec2 server以及drawio进行aws画图
aws(学习笔记第一课) 使用AWS CLI 学习内容: 使用AWS CLI配置密钥对创建ec2 server使用drawio(vscode插件)进行AWS的画图 1. 使用AWS CLI 注册AWS账号 AWS是通用的云计算平台,可以提供ec2,vpc,SNS以及clo…...
【Python】Eventlet 异步网络库简介
Eventlet 是一个 Python 的异步网络库,它使用协程(green threads)来简化并发编程。通过非阻塞的 I/O 操作,Eventlet 使得你可以轻松编写高性能的网络应用程序,而无需处理复杂的回调逻辑或编写多线程代码。它广泛应用于…...
【JNI】数组的基本使用
在上一期讲了基本类型的基本使用,这期来说一说数组的基本使用 HelloJNI.java:实现myArray函数,把一个整型数组转换为双精度型数组 public class HelloJNI { static {System.loadLibrary("hello"); }private native String HelloW…...
React跨平台
React的跨平台应用开发详解如下: 一、跨平台能力 React本身是一个用于构建用户界面的JavaScript库,但它通过React Native等框架实现了跨平台应用开发的能力。React Native允许开发者使用JavaScript和React来编写原生应用,这些应用可以在iOS和…...
如何在 SQL 中更新表中的记录?
当你需要修改数据库中已存在的数据时,UPDATE 语句是你的首选工具。 这允许你更改表中一条或多条记录的特定字段值。 下面我将详细介绍如何使用 UPDATE 语句,并提供一些开发建议和注意事项。 基础用法 假设我们有一个名为 employees 的表,…...
宠物饮水机的水箱低液位提醒如何实现?
ICMAN液位检测芯片轻松实现宠物饮水机的水箱低液位提醒功能! 工作原理 : 基于双通道电容式单点液位检测原理 方案特点: 液位检测精度高达1mm,超强抗干扰,动态CS 10V 为家用电器水位提醒的应用提供了一种简单而又有…...
EXCEL_光标百分比
Public Sub InitCells()Dim iSheet As LongFor iSheet Sheets.Count To 1 Step -1Sheets(iSheet).ActivateActiveWindow.Zoom 85ActiveWindow.ScrollRow 1ActiveWindow.ScrollColumn 1Sheets(iSheet).Range("A1").ActivateNext iSheetEnd Sub对日项目中的文档满天…...
(一)Web 网站服务之 Apache
一、Apache 的作用和特点 作用:Apache 是一款开源的网站服务器端软件,为网站的运行提供了稳定的基础。特点: 开源免费:这使得任何人都可以免费使用和修改它。模块化设计:具有高度的灵活性,可以根据需求选择…...
英语词汇小程序小程序|英语词汇小程序系统|基于java的四六级词汇小程序设计与实现(源码+数据库+文档)
英语词汇小程序 目录 基于java的四六级词汇小程序设计与实现 一、前言 二、系统功能设计 三、系统实现 四、数据库设计 1、实体ER图 五、核心代码 六、论文参考 七、最新计算机毕设选题推荐 八、源码获取: 博主介绍:✌️大厂码农|毕设布道师&a…...
AI学习指南深度学习篇-学习率衰减的实现机制
AI学习指南深度学习篇-学习率衰减的实现机制 前言 在深度学习中,学习率是影响模型训练的重要超参数之一。合理的学习率设置不仅可以加速模型收敛,还可以避免训练过程中出现各种问题,如过拟合或训练不收敛。学习率衰减是一种动态调整学习率的…...
国防科技大学计算机基础课程笔记02信息编码
1.机内码和国标码 国标码就是我们非常熟悉的这个GB2312,但是因为都是16进制,因此这个了16进制的数据既可以翻译成为这个机器码,也可以翻译成为这个国标码,所以这个时候很容易会出现这个歧义的情况; 因此,我们的这个国…...
(二)TensorRT-LLM | 模型导出(v0.20.0rc3)
0. 概述 上一节 对安装和使用有个基本介绍。根据这个 issue 的描述,后续 TensorRT-LLM 团队可能更专注于更新和维护 pytorch backend。但 tensorrt backend 作为先前一直开发的工作,其中包含了大量可以学习的地方。本文主要看看它导出模型的部分&#x…...
AtCoder 第409场初级竞赛 A~E题解
A Conflict 【题目链接】 原题链接:A - Conflict 【考点】 枚举 【题目大意】 找到是否有两人都想要的物品。 【解析】 遍历两端字符串,只有在同时为 o 时输出 Yes 并结束程序,否则输出 No。 【难度】 GESP三级 【代码参考】 #i…...
[10-3]软件I2C读写MPU6050 江协科技学习笔记(16个知识点)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16...
用docker来安装部署freeswitch记录
今天刚才测试一个callcenter的项目,所以尝试安装freeswitch 1、使用轩辕镜像 - 中国开发者首选的专业 Docker 镜像加速服务平台 编辑下面/etc/docker/daemon.json文件为 {"registry-mirrors": ["https://docker.xuanyuan.me"] }同时可以进入轩…...
DeepSeek 技术赋能无人农场协同作业:用 AI 重构农田管理 “神经网”
目录 一、引言二、DeepSeek 技术大揭秘2.1 核心架构解析2.2 关键技术剖析 三、智能农业无人农场协同作业现状3.1 发展现状概述3.2 协同作业模式介绍 四、DeepSeek 的 “农场奇妙游”4.1 数据处理与分析4.2 作物生长监测与预测4.3 病虫害防治4.4 农机协同作业调度 五、实际案例大…...
均衡后的SNRSINR
本文主要摘自参考文献中的前两篇,相关文献中经常会出现MIMO检测后的SINR不过一直没有找到相关数学推到过程,其中文献[1]中给出了相关原理在此仅做记录。 1. 系统模型 复信道模型 n t n_t nt 根发送天线, n r n_r nr 根接收天线的 MIMO 系…...
10-Oracle 23 ai Vector Search 概述和参数
一、Oracle AI Vector Search 概述 企业和个人都在尝试各种AI,使用客户端或是内部自己搭建集成大模型的终端,加速与大型语言模型(LLM)的结合,同时使用检索增强生成(Retrieval Augmented Generation &#…...
Fabric V2.5 通用溯源系统——增加图片上传与下载功能
fabric-trace项目在发布一年后,部署量已突破1000次,为支持更多场景,现新增支持图片信息上链,本文对图片上传、下载功能代码进行梳理,包含智能合约、后端、前端部分。 一、智能合约修改 为了增加图片信息上链溯源,需要对底层数据结构进行修改,在此对智能合约中的农产品数…...
深度学习水论文:mamba+图像增强
🧀当前视觉领域对高效长序列建模需求激增,对Mamba图像增强这方向的研究自然也逐渐火热。原因在于其高效长程建模,以及动态计算优势,在图像质量提升和细节恢复方面有难以替代的作用。 🧀因此短时间内,就有不…...
