不可错过!CMU最新《生成式人工智能大模型》课程:从文本、图像到多模态大模型
1. 课程简介
从生成图像和文本到生成音乐和艺术,生成模型一直是人工智能的关键挑战之一。本课程将探讨推动生成模型和基础模型(Foundation Models)最近进展的机器学习和人工智能技术。学生将学习、开发并应用最先进的算法,使机器能够生成逼真且富有创意的内容。核心主题包括:学习的基本机制;如何构建生成模型及其他大型基础模型(例如,视觉和语言的 Transformer,扩散模型);如何训练这些模型(预训练,微调)并有效地调整它们(适配器、上下文学习);如何扩展到大规模数据集(多 GPU/分布式优化);如何将现有模型用于日常任务(生成代码、使用生成模型进行代码编写)。学生还将探讨其内在工作机制的理论基础和经验研究,了解模型可能出现的问题(偏见、幻觉、对抗攻击、数据污染)及应对这些问题的方法。本课程不仅通过实现帮助学生理解现代技术,还将使用现有的库和模型,探索生成模型的能力及其局限性。本课程适合已完成机器学习或深度学习入门课程的学生。
https://www.cs.cmu.edu/~mgormley/courses/10423/
学习成果:
课程结束后,学生应能够:
-
区分不同的学习机制,如参数调整和上下文学习。
-
实现现代生成建模方法的基础模型,如 Transformer 和扩散模型。
-
将现有模型应用于文本、代码、图像、音频和视频的实际生成问题。
-
使用技术来调整基础模型,完成任务如微调、适配器和上下文学习。
-
使生成建模方法能够扩展到大型文本、代码或图像数据集。
-
使用现有生成模型解决实际的判别问题及其他日常用例。
-
分析大规模基础模型的理论属性。
-
识别不同模态生成模型可能出现的问题。
-
描述大规模生成 AI 系统的社会影响。
有关所涵盖主题的更多详细信息,请参见课程时间表页面。
2. 先修要求
参加本课程的学生应具备机器学习或深度学习入门课程的工作知识,需修完以下课程之一(10301 或 10315 或 10601 或 10701 或 10715 或 11485 或 11685 或 11785)。
必须严格遵守这些先修要求! 即使卡内基梅隆大学(CMU)的注册系统未阻止你注册此课程,仍有责任确保你在注册前具备所有先修要求。
讲者:
课程内容
文本生成式模型 Generative models of text
-
循环神经网络与语言建模 RNN LMs / Autodiff
-
Transformer LMs
-
学习LLMs 编码 Learning LLMs / Decoding
-
预训练、微调 Pre-training, fine-tuning / Modern Transformers / CNNs
图像生成式模型 Generative models of Images
-
Lecture 6 : Generative Adversarial Networks (GANs) / VAEs / PGM
-
Lecture 7 : Variational Inference / Variational Autoencoders (VAEs)
-
Lecture 8 : Diffusion models (Part I)
应用适配基础模型 Applying and adapting foundation models
-
Lecture 9 : Diffusion models (Part II) / In-context learning for text & for vision
-
Lecture 10 : Parameter-efficient fine tuning
-
Lecture 11 : Reinforcement learning with human feedback (RLHF)
多模态大模型 Multimodal foundation models
-
Lecture 12 : Text-to-image generation / Aligning multimodal representations (CLIP)
-
Lecture 13 : Prompt-to-Prompt
-
Lecture 14 : Visual-language models
如何系统的去学习大模型LLM ?
大模型时代,火爆出圈的LLM大模型让程序员们开始重新评估自己的本领。 “AI会取代那些行业
?”“谁的饭碗又将不保了?
”等问题热议不断。
事实上,抢你饭碗的不是AI,而是会利用AI的人。
继科大讯飞、阿里、华为
等巨头公司发布AI产品后,很多中小企业也陆续进场!超高年薪,挖掘AI大模型人才! 如今大厂老板们,也更倾向于会AI的人,普通程序员,还有应对的机会吗?
与其焦虑……
不如成为「掌握AI工具的技术人
」,毕竟AI时代,谁先尝试,谁就能占得先机!
但是LLM相关的内容很多,现在网上的老课程老教材关于LLM又太少。所以现在小白入门就只能靠自学,学习成本和门槛很高。
针对所有自学遇到困难的同学们,我帮大家系统梳理大模型学习脉络,将这份 LLM大模型资料
分享出来:包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程
等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓
👉CSDN大礼包🎁:全网最全《LLM大模型入门+进阶学习资源包》免费分享(安全链接,放心点击)👈
一、LLM大模型经典书籍
AI大模型已经成为了当今科技领域的一大热点,那以下这些大模型书籍就是非常不错的学习资源。
二、640套LLM大模型报告合集
这套包含640份报告的合集,涵盖了大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。(几乎涵盖所有行业)
三、LLM大模型系列视频教程
四、LLM大模型开源教程(LLaLA/Meta/chatglm/chatgpt)
LLM大模型学习路线 ↓
阶段1:AI大模型时代的基础理解
-
目标:了解AI大模型的基本概念、发展历程和核心原理。
-
内容:
- L1.1 人工智能简述与大模型起源
- L1.2 大模型与通用人工智能
- L1.3 GPT模型的发展历程
- L1.4 模型工程
- L1.4.1 知识大模型
- L1.4.2 生产大模型
- L1.4.3 模型工程方法论
- L1.4.4 模型工程实践
- L1.5 GPT应用案例
阶段2:AI大模型API应用开发工程
-
目标:掌握AI大模型API的使用和开发,以及相关的编程技能。
-
内容:
- L2.1 API接口
- L2.1.1 OpenAI API接口
- L2.1.2 Python接口接入
- L2.1.3 BOT工具类框架
- L2.1.4 代码示例
- L2.2 Prompt框架
- L2.3 流水线工程
- L2.4 总结与展望
阶段3:AI大模型应用架构实践
-
目标:深入理解AI大模型的应用架构,并能够进行私有化部署。
-
内容:
- L3.1 Agent模型框架
- L3.2 MetaGPT
- L3.3 ChatGLM
- L3.4 LLAMA
- L3.5 其他大模型介绍
阶段4:AI大模型私有化部署
-
目标:掌握多种AI大模型的私有化部署,包括多模态和特定领域模型。
-
内容:
- L4.1 模型私有化部署概述
- L4.2 模型私有化部署的关键技术
- L4.3 模型私有化部署的实施步骤
- L4.4 模型私有化部署的应用场景
这份 LLM大模型资料
包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程
等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓
👉CSDN大礼包🎁:全网最全《LLM大模型入门+进阶学习资源包》免费分享(安全链接,放心点击)👈
相关文章:

不可错过!CMU最新《生成式人工智能大模型》课程:从文本、图像到多模态大模型
1. 课程简介 从生成图像和文本到生成音乐和艺术,生成模型一直是人工智能的关键挑战之一。本课程将探讨推动生成模型和基础模型(Foundation Models)最近进展的机器学习和人工智能技术。学生将学习、开发并应用最先进的算法,使机器…...

重庆数字孪生工业互联网可视化技术,赋能新型工业化智能制造工厂
重庆作为西南地区的重要工业基地,正积极探索和实践数字孪生、工业互联网及可视化技术在智能制造领域的深度融合,致力于打造新型工业化智能制造工厂,为制造业的高质量发展注入强劲动力。 在重庆的智能制造工厂中,数字孪生技术被广…...
Qt QPushButton clicked信号浅析
前言 Qt 的 QPushButton clicked 信号原型: void clicked(bool checked false);通常,使用 Qt 的 QPushButton clicked 点击信号时,会以如下方式使用: connect(ui->pushButton, &QPushButton::clicked, this, [](){qDeb…...
Python时间戳转日期
在Python中,你可以使用datetime模块将时间戳转换为日期。时间戳通常是一个表示自1970年1月1日(UTC)以来的秒数的浮点数或整数。 以下是一个简单的示例,展示了如何将时间戳转换为日期和时间: import datetime# 示例时…...

对 LLM 工具使用进行统一
我们为 LLM 确立了一个跨模型的 统一工具调用 API。有了它,你就可以在不同的模型上使用相同的代码,在 [Mistral] 或 [Llama]) 等模型间自由切换,而无需或很少需要根据模型更改工具调用相关的代码。此外,我们还在 transformers 中新…...
webpack/vite的区别
Webpack和Vite都是前端开发中常用的构建工具,它们在多个方面存在显著的区别。以下是对这两个构建工具的详细比较: 一、基础概念与定位 Webpack Webpack是一个现代JavaScript应用程序的静态模块打包器(module bundler)。它允许开发…...

【笔记】信度检验
一、信度 信度是指测量结果的一致性和稳定性。 1.一致性(Consistency) 一致性指的是测量工具内部各个部分或项目之间的协调一致程度。高一致性意味着测量工具的不同部分都在测量同一个概念或特质。 例子:智力测试 假设我们有一个包含100…...
使用Python实现无人机路径规划的灰狼优化算法
目录 使用 Python 实现无人机路径规划的灰狼优化算法引言1. 灰狼优化算法概述1.1 定义1.2 算法原理1.3 灰狼的狩猎策略1.4 算法步骤 2. Python 中的灰狼优化算法实现2.1 安装必要的库2.2 定义类2.2.1 灰狼类2.2.2 群体类2.2.3 路径规划类 2.3 示例程序 3. 灰狼优化算法的优缺点…...

理解递归和回溯
文章目录 什么是递归回溯 什么是递归 回溯 //使用递归回溯来给小球找路//说明//1. map 表示地图//2. i,j 表示从地图的哪个位置开始出发 (1,1)//3. 如果小球能到 map[6][5] 位置,则说明通路找到.//4. 约定: 当map[i][j] 为 0 表示该点没有走过 当为 1 表…...
知识图谱入门——3:工具分类与对比(知识建模工具:Protégé、 知识抽取工具:DeepDive、知识存储工具:Neo4j)
在知识图谱构建的过程中,针对不同的任务和需求,我们可以使用多种工具。为了帮助你快速选择合适的工具,本文将常用工具按类别进行分类介绍,并对比其优缺点,方便你在不同场景中做出最佳选择。 文章目录 1. 知识建模工具…...
使用指标进行量化交易时,有哪些需要注意的风险点呢
炒股自动化:申请官方API接口,散户也可以 python炒股自动化(0),申请券商API接口 python炒股自动化(1),量化交易接口区别 Python炒股自动化(2):获取…...

数据结构阶段测试2的一点小补充
数据结构阶段测试2的一点小补充 1.已知⼩根堆为8,15,10,21,34,16,12,删除关键字8之后需重建堆,最后的叶⼦ 节点为() A. 34 B. 21 C. 16 D. 12 解题思路 向下调整算法删除堆顶元素 💡 答案:C 删除堆顶元素的思路: …...
量化交易里面的挂单成交率大概是多少呢
炒股自动化:申请官方API接口,散户也可以 python炒股自动化(0),申请券商API接口 python炒股自动化(1),量化交易接口区别 Python炒股自动化(2):获取…...

【Android 14源码分析】Activity启动流程-3
忽然有一天,我想要做一件事:去代码中去验证那些曾经被“灌输”的理论。 – 服装…...
Javascript客户端时间与服务器时间
在Java代码中使用new Date(),获取的是本机时间; 但是在Javascript 中使用new Date(),获取的却是访问该页面的客户端时间。 这样,就可能会出现一个问题:我的电脑时间比正常时间要快,我访问一个页面&#x…...
系统架构设计师教程 第11章 11.4 边缘计算概述 笔记
11.4 边缘计算概述 ★★☆☆☆ 11.4.1 边缘计算概念 边缘计算将数据的处理、应用程序的运行甚至一些功能服务的实现,由 网络中心下放到网络边缘的节点上。在网络边缘侧的智能网关上就近采集并且处理数据,不需要上传原生数据。 11.4.2 边缘计算的定义 1…...
CSS全解析
文章目录 CSS全解析一、CSS是什么二、基本语法规范三、引入方式(一)内部样式表(二)行内样式表(三)外部样式 四、代码风格(一)样式格式(二)样式大小写…...

一款基于 Java 的可视化 HTTP API 接口快速开发框架,干掉 CRUD,效率爆炸(带私活源码)
平常我们经常需要编写 API,但其实常常只是一些简单的增删改查,写这些代码非常枯燥无趣。 今天给大家带来的是一款基于 Java 的可视化 HTTP API 接口快速开发框架,通过 UI 界面编写接口,无需定义 Controller、Service、Dao 等 Jav…...

CSS3渐变
一、线性渐变 通过background-image: linear-gradient(...)设置线性渐变 语法: linear-gradient(direction,color1,color2, . . ) direction:渐变方向,默认从上到下,可选值: 简单选取: ① to right&…...

Emissive CEO Fabien Barati谈《消失的法老》背后的故事:XR大空间体验的创新与未来
在最近的一次播客访谈中,虚拟现实之声(Voices of VR)的主持人Kent Bye与Emissive公司的联合创始人兼CEO Fabien Barati进行了深入交流。Emissive是全球顶级的VR大空间体验制作商之一,以其沉浸式探险项目如《永恒的巴黎圣母院》和《胡夫地平线》而闻名。以下是这次访谈的核心…...
深入浅出:JavaScript 中的 `window.crypto.getRandomValues()` 方法
深入浅出:JavaScript 中的 window.crypto.getRandomValues() 方法 在现代 Web 开发中,随机数的生成看似简单,却隐藏着许多玄机。无论是生成密码、加密密钥,还是创建安全令牌,随机数的质量直接关系到系统的安全性。Jav…...

聊聊 Pulsar:Producer 源码解析
一、前言 Apache Pulsar 是一个企业级的开源分布式消息传递平台,以其高性能、可扩展性和存储计算分离架构在消息队列和流处理领域独树一帜。在 Pulsar 的核心架构中,Producer(生产者) 是连接客户端应用与消息队列的第一步。生产者…...
鸿蒙中用HarmonyOS SDK应用服务 HarmonyOS5开发一个医院挂号小程序
一、开发准备 环境搭建: 安装DevEco Studio 3.0或更高版本配置HarmonyOS SDK申请开发者账号 项目创建: File > New > Create Project > Application (选择"Empty Ability") 二、核心功能实现 1. 医院科室展示 /…...
电脑插入多块移动硬盘后经常出现卡顿和蓝屏
当电脑在插入多块移动硬盘后频繁出现卡顿和蓝屏问题时,可能涉及硬件资源冲突、驱动兼容性、供电不足或系统设置等多方面原因。以下是逐步排查和解决方案: 1. 检查电源供电问题 问题原因:多块移动硬盘同时运行可能导致USB接口供电不足&#x…...
解决本地部署 SmolVLM2 大语言模型运行 flash-attn 报错
出现的问题 安装 flash-attn 会一直卡在 build 那一步或者运行报错 解决办法 是因为你安装的 flash-attn 版本没有对应上,所以报错,到 https://github.com/Dao-AILab/flash-attention/releases 下载对应版本,cu、torch、cp 的版本一定要对…...
汇编常见指令
汇编常见指令 一、数据传送指令 指令功能示例说明MOV数据传送MOV EAX, 10将立即数 10 送入 EAXMOV [EBX], EAX将 EAX 值存入 EBX 指向的内存LEA加载有效地址LEA EAX, [EBX4]将 EBX4 的地址存入 EAX(不访问内存)XCHG交换数据XCHG EAX, EBX交换 EAX 和 EB…...

关键领域软件测试的突围之路:如何破解安全与效率的平衡难题
在数字化浪潮席卷全球的今天,软件系统已成为国家关键领域的核心战斗力。不同于普通商业软件,这些承载着国家安全使命的软件系统面临着前所未有的质量挑战——如何在确保绝对安全的前提下,实现高效测试与快速迭代?这一命题正考验着…...

基于 TAPD 进行项目管理
起因 自己写了个小工具,仓库用的Github。之前在用markdown进行需求管理,现在随着功能的增加,感觉有点难以管理了,所以用TAPD这个工具进行需求、Bug管理。 操作流程 注册 TAPD,需要提供一个企业名新建一个项目&#…...

Python 实现 Web 静态服务器(HTTP 协议)
目录 一、在本地启动 HTTP 服务器1. Windows 下安装 node.js1)下载安装包2)配置环境变量3)安装镜像4)node.js 的常用命令 2. 安装 http-server 服务3. 使用 http-server 开启服务1)使用 http-server2)详解 …...
MySQL 索引底层结构揭秘:B-Tree 与 B+Tree 的区别与应用
文章目录 一、背景知识:什么是 B-Tree 和 BTree? B-Tree(平衡多路查找树) BTree(B-Tree 的变种) 二、结构对比:一张图看懂 三、为什么 MySQL InnoDB 选择 BTree? 1. 范围查询更快 2…...