强化学习部分代码的注释分析
引言
对一些代码块进行注释。我直接复制过来的,不能运行的话别怪我。
多臂赌博机
代码来自链接。欢迎回到原来的链接学习。
%I thought what I'd do was I'd pretend I was one of those deaf-mutes,or should I ?clear all;
epsilon=[0.5,0.2,0.1,0.02,0.005]; %epsilon概率进行探索(exploration),1-epsilon概率进行利用(exploitation)
m=5; 表示一共有5种情况T=10000; 表示一共运行1万次
%决策机内存初始化
Avegain=zeros(m,5); % 每种情况,标记当下每一个摇臂的中奖概率
Testtime=zeros(m,5); % 每种情况下,标记每一个实验摇臂的实验次数
Reward=zeros(5,T); % 奖励for k=1:mfor i=1:Tif rand(1)<=epsilon(k) %探索num=unidrnd(5); %随机生成最大为5的正整数,随机选择摇臂else %利用a=findmax(Avegain(k,:)); % 自主建立函数,选择在当前情况下最大中奖概率的摇臂num=a(2);%选择平均奖赏最大的摇臂。因为是自建函数,这个应该是返回摇臂的序号endr=Slotmachine5(num);% 自建函数,拉下摇杆,获得回报。if i==1 %更新累计奖赏Reward(k,i)=r;elseReward(k,i)=(Reward(k,i-1)*(i-1)+r)/i;end Avegain(k,num)=(Avegain(k,num)*Testtime(k,num)+r)/(Testtime(k,num)+1); %更新所选臂的平均奖赏Testtime(k,num)=Testtime(k,num)+1; %更新所选臂的实验次数end
end
result.Testtime=Testtime;
result.Avegain=Avegain;
result.Reward=Reward;
plot(1:10000,Reward);
xlabel('测试次数');
ylabel('平均累计奖赏');
legend('ε=0.5','ε=0.2','ε=0.1','ε=0.02','ε=0.005');
剩下的我相信大家都已经懂了。这就是相信的力量。
风场中的Q-learning
风场中的Q-learning源自网址:
%I thought what I'd do was I'd pretend I was one of those deaf-mutes, or should I?clear all;%风速初始化
Windyworld.windx=zeros(7,10);
Windyworld.windy=zeros(7,10);
Windyworld.windy(:,4:9)=Windyworld.windy(:,4:9)+1; % 定义风速向量(在4-9之间为x=0, y=1)targetxy=[6,8]; %!!注意:第一个坐标为y坐标,第二个坐标为x坐标 终点坐标alpha=0.5;
gamma=0.99;
Tloop=6000; %总学习循环次数
mark=zeros(1,Tloop); %记录是否成功%迭代为二重时间循环
Q_func=zeros(7,10,4); %!!三维值函数矩阵:(z=1:+x)(z=2:-x)(z=3:+y)(z=4:-y) 初始化定义Q表格
Q_func(:,:,1)=0.2; %size(B),ndims(B)
Q_func(targetxy(1),targetxy(2),:)=0; %目标值的所有Q函数始终为0for Ts=1:Tloop %Ts=study time%单次运动初始化rolexy=[4,1]; % 初始化出发result(Ts).Q_func=zeros(7,10,4); % result(Ts).trace=zeros(40,3);result(Ts).trace(1,:)=([1,rolexy(1),rolexy(2)]);for Tm=1:40% 按照策略获得到达下一步的动作。这其中包括智能体选择动作的ε-greedy策略,函数名tcegreedy,Ts为训练次数,Q_func(rolexy(1),rolexy(2),:)为当下Q表格的内容;act=tcegreedy(Ts,Q_func(rolexy(1),rolexy(2),:));% 智能体在风的影响下运动,函数名movement;输入参数包括,选择的动作act,当下的位置rolexy以及风速运行的方位Windyworldnextxy=movement(act,rolexy,Windyworld);%TD算法进行策略值迭代%计算reward% 计算,如果到达目标则返回奖励;超出边界则返回惩罚,没有超出边界且没到达目标则返回0奖励 if nextxy(1)==targetxy(1)&&nextxy(2)==targetxy(2) %到达目标reward=5;else if nextxy(1)<1||nextxy(1)>7||nextxy(2)<1||nextxy(2)>10 %超出边界reward=-1;elsereward=0;end %reward不考虑超出步数的问题end%计算下一步的策略函数最大值%Qlearning方式进行Q函数更新,更新Q值中所用的s'状态下动作与实际在s'状态下做出动作不一定相同(因为e-greedy的存在)if nextxy(1)<1||nextxy(1)>7||nextxy(2)<1||nextxy(2)>10 %超出边界Q1=0;elseQ1=max(Q_func(nextxy(1),nextxy(2),:));endQ_func(rolexy(1),rolexy(2),act)=(1-alpha)*Q_func(rolexy(1),rolexy(2),act)+alpha*(reward+gamma*Q1);%更新坐标rolexy=nextxy;result(Ts).trace(Tm+1,:)=([Tm+1,rolexy(1),rolexy(2)]);%判断是否跳出本episodeif rolexy(1)==targetxy(1)&&rolexy(2)==targetxy(2)mark(Ts)=1; % 如果到达目标,则返回成功标记break;else if rolexy(1)<1||rolexy(1)>7||rolexy(2)<1||rolexy(2)>10break; % 否则出界,直接退出endend endresult(Ts).Q_func=Q_func;
endAvegain=zeros(1,Tloop);
for i=1:TloopAvegain(i)=sum(mark(1:i))/i; % 返回不同时期的成功概率
end
相关文章:
强化学习部分代码的注释分析
引言 对一些代码块进行注释。我直接复制过来的,不能运行的话别怪我。 多臂赌博机 代码来自链接。欢迎回到原来的链接学习。 %I thought what Id do was Id pretend I was one of those deaf-mutes,or should I ?clear all; epsilon[0.5,0.2,0.1,0.0…...
ctf.bugku-备份是个好习惯
访问页面得到字符串 这串字符串是重复的; d41d8cd98f00b204e9800998ecf8427e 从前端、源码上看,除了这段字符串,没有其他信息;尝试解密,长度32位;各种解密方式试试; MD5免费在线解密破解_MD5在…...
C++面试速通宝典——14
220. static关键字的作用 static关键字在编程中有多种作用: 在类的成员变量前使用,表示该变量属于类本身,而不是任何类的实例。在类的成员函数前使用,表示该函数不需要对象实例即可调用,且只能访问类的静…...
k8s的简介和部署
一、k8s简介 在部署应用程序的方式上面,主要经历了三个阶段: 传统部署:互联网早期,会直接将应用程序部署在物理机上优点:简单,不需要其它技术的参与缺点:不能为应用程序定义资源使用边界,很难合理地分配计算资源&…...
Thingsboard 网关实战 modbus通信 rpc下发控制指令
我们这里说的是Thingsboard通过网关modbus通信接入设备,然后通过rpc下发指令去控制开关信号的设备,不会网关通过modbus接入设备的,可以看我之前的文章,从小白教学。 下面我们就说如何下发rpc开关信号指令 第一步.在modbus配置文…...
基于pytorch的手写数字识别
import pandas as pd import numpy as np import torch import matplotlib import matplotlib.pyplot as plt from torch.utils.data import TensorDataset, DataLoadermatplotlib.use(tkAgg)# 设置图形配置 config {"font.family": serif,"mathtext.fontset&q…...
MySQL 实验 7:索引的操作
MySQL 实验 7:索引的操作 索引是对数据表中一列或多列的值进行排序的一种结构,索引可以大大提高 MySQL 的检索速度。合理使用索引,可以大大提升 SQL 查询的性能。 索引好比是一本书前面的目录,假如我们需要从书籍查找与 xx 相关…...
为Floorp浏览器添加搜索引擎及搜索栏相关设置. 2024-10-05
Floorp浏览器开源项目地址: https://github.com/floorp-Projects/floorp/ 1.第一步 为Floorp浏览器添加搜索栏 (1.工具栏空白处 次键选择 定制工具栏 (2. 把 搜索框 拖动至工具栏 2.添加搜索引擎 以添加 搜狗搜索 为例 (1.访问 搜索引擎网址 搜狗搜索引擎 - 上网从搜狗开始 (2…...
如何设置WSL Ubuntu在Windows开机时自动启动
如何设置WSL Ubuntu在Windows开机时自动启动 步骤详解1. 创建批处理脚本2. 添加到Windows启动项 注意事项结语 在使用Windows Subsystem for Linux (WSL) 时,我们可能希望Ubuntu能够在Windows启动时自动运行。本文将介绍如何实现这一功能,让您的开发环境更加便捷。 步骤详解 …...
使用TensorBoard可视化模型
目录 TensorBoard简介 神经网络模型 可视化 轮次-损失曲线 轮次-准确率曲线 轮次-学习率曲线 迭代-评估准确率曲线 迭代-评估损失曲线 TensorBoard简介 TensorBoard是一款出色的交互式的模型可视化工具。安装TensorFlow时,会自动安装TensorBoard。如图: TensorFlow可…...
《深度学习》OpenCV 图像拼接 原理、参数解析、案例实现
目录 一、图像拼接 1、直接看案例 图1与图2展示: 合并完结果: 2、什么是图像拼接 3、图像拼接步骤 1)加载图像 2)特征点检测与描述 3)特征点匹配 4)图像配准 5)图像变换和拼接 6&am…...
Hive数仓操作(三)
一、Hive 数据库操作 1. 创建数据库 基本创建数据库命令: CREATE DATABASE bigdata;说明: 数据库会在 HDFS 中以目录的形式创建和保存,数据库名称会存储在 Hive 的元数据中。如果不指定目录,数据库将在 /user/hive/warehouse 下…...
TDSQL-C电商可视化,重塑电商决策新纪元
前言: 在数字化浪潮席卷全球的今天,电子商务行业以其独特的魅力和无限潜力,成为了推动全球经济增长的重要引擎。然而,随着业务规模的急剧扩张,海量数据的涌现给电商企业带来了前所未有的挑战与机遇。如何高效地处理、…...
翔云 OCR:发票识别与验真
在数字化时代,高效处理大量文档和数据成为企业和个人的迫切需求。翔云 OCR 作为一款强大的光学字符识别工具,在发票识别及验真方面表现出色,为我们带来了极大的便利。 一、翔云 OCR 简介 翔云 OCR 是一款基于先进的人工智能技术开发的文字识别…...
HTML ASCII:Web 开发中的字符编码基础
HTML ASCII:Web 开发中的字符编码基础 ASCII,全称为美国信息交换标准代码(American Standard Code for Information Interchange),是一种用于电子通信的字符编码标准。它最初于1963年提出,用于在不同的计算…...
Meta 首个多模态大模型一键启动!首个多针刺绣数据集上线,含超 30k 张图片
小扎在 Meta Connect 2024 主题演讲中宣布推出首个多模态大模型 Llama 3.2 vision!该模型有 11B 和 90B 两个版本,成为首批支持多模态任务的 Llama 系列模型,根据官方数据,这两个开原模型的性能已超越闭源模型。 小编已经迫不及待…...
阿里云ECS服务器仿真
1.首先使用qemu-img对RAW镜像进行转换,qemu-img convert -O vmdk 1.raw 2.vmdk 2.使用WinHex对镜像的root密码进行删除 3.由于这次阿里云ECS使用了CONFIG_SYSTEM_TRUSTED_KEYS验证,无法直接仿真,需使用live系统对内核进行修改。分为以下几步&…...
如何为树莓派安装操作系统,以及远程操控树莓派的两种方法,无线操控和插网线操控
文章目录 一、下载树莓派的系统二、将文件下载到SD卡中1.使用官方软件2.其他选择 三、远程连接电脑安装vnc-viewer1.无线操作(配置树莓派,开启VNC)电脑远程配置2.有线连接(需要一根网线) 总结 一、下载树莓派的系统 下…...
【最新华为OD机试E卷-支持在线评测】简单的自动曝光(100分)多语言题解-(Python/C/JavaScript/Java/Cpp)
🍭 大家好这里是春秋招笔试突围 ,一枚热爱算法的程序员 💻 ACM金牌🏅️团队 | 大厂实习经历 | 多年算法竞赛经历 ✨ 本系列打算持续跟新华为OD-E/D卷的多语言AC题解 🧩 大部分包含 Python / C / Javascript / Java / Cpp 多语言代码 👏 感谢大家的订阅➕ 和 喜欢�…...
每日一练:等差数列划分
413. 等差数列划分 - 力扣(LeetCode) 题目要求: 如果一个数列 至少有三个元素 ,并且任意两个相邻元素之差相同,则称该数列为等差数列。 例如,[1,3,5,7,9]、[7,7,7,7] 和 [3,-1,-5,-9] 都是等差数列。 给…...
多云管理“拦路虎”:深入解析网络互联、身份同步与成本可视化的技术复杂度
一、引言:多云环境的技术复杂性本质 企业采用多云策略已从技术选型升维至生存刚需。当业务系统分散部署在多个云平台时,基础设施的技术债呈现指数级积累。网络连接、身份认证、成本管理这三大核心挑战相互嵌套:跨云网络构建数据…...
基于距离变化能量开销动态调整的WSN低功耗拓扑控制开销算法matlab仿真
目录 1.程序功能描述 2.测试软件版本以及运行结果展示 3.核心程序 4.算法仿真参数 5.算法理论概述 6.参考文献 7.完整程序 1.程序功能描述 通过动态调整节点通信的能量开销,平衡网络负载,延长WSN生命周期。具体通过建立基于距离的能量消耗模型&am…...
8k长序列建模,蛋白质语言模型Prot42仅利用目标蛋白序列即可生成高亲和力结合剂
蛋白质结合剂(如抗体、抑制肽)在疾病诊断、成像分析及靶向药物递送等关键场景中发挥着不可替代的作用。传统上,高特异性蛋白质结合剂的开发高度依赖噬菌体展示、定向进化等实验技术,但这类方法普遍面临资源消耗巨大、研发周期冗长…...
学校招生小程序源码介绍
基于ThinkPHPFastAdminUniApp开发的学校招生小程序源码,专为学校招生场景量身打造,功能实用且操作便捷。 从技术架构来看,ThinkPHP提供稳定可靠的后台服务,FastAdmin加速开发流程,UniApp则保障小程序在多端有良好的兼…...
工程地质软件市场:发展现状、趋势与策略建议
一、引言 在工程建设领域,准确把握地质条件是确保项目顺利推进和安全运营的关键。工程地质软件作为处理、分析、模拟和展示工程地质数据的重要工具,正发挥着日益重要的作用。它凭借强大的数据处理能力、三维建模功能、空间分析工具和可视化展示手段&…...
CMake 从 GitHub 下载第三方库并使用
有时我们希望直接使用 GitHub 上的开源库,而不想手动下载、编译和安装。 可以利用 CMake 提供的 FetchContent 模块来实现自动下载、构建和链接第三方库。 FetchContent 命令官方文档✅ 示例代码 我们将以 fmt 这个流行的格式化库为例,演示如何: 使用 FetchContent 从 GitH…...
Spring AI与Spring Modulith核心技术解析
Spring AI核心架构解析 Spring AI(https://spring.io/projects/spring-ai)作为Spring生态中的AI集成框架,其核心设计理念是通过模块化架构降低AI应用的开发复杂度。与Python生态中的LangChain/LlamaIndex等工具类似,但特别为多语…...
大数据学习(132)-HIve数据分析
🍋🍋大数据学习🍋🍋 🔥系列专栏: 👑哲学语录: 用力所能及,改变世界。 💖如果觉得博主的文章还不错的话,请点赞👍收藏⭐️留言Ǵ…...
学校时钟系统,标准考场时钟系统,AI亮相2025高考,赛思时钟系统为教育公平筑起“精准防线”
2025年#高考 将在近日拉开帷幕,#AI 监考一度冲上热搜。当AI深度融入高考,#时间同步 不再是辅助功能,而是决定AI监考系统成败的“生命线”。 AI亮相2025高考,40种异常行为0.5秒精准识别 2025年高考即将拉开帷幕,江西、…...
Java求职者面试指南:计算机基础与源码原理深度解析
Java求职者面试指南:计算机基础与源码原理深度解析 第一轮提问:基础概念问题 1. 请解释什么是进程和线程的区别? 面试官:进程是程序的一次执行过程,是系统进行资源分配和调度的基本单位;而线程是进程中的…...
