基于pytorch的手写数字识别
import pandas as pd
import numpy as np
import torch
import matplotlib
import matplotlib.pyplot as plt
from torch.utils.data import TensorDataset, DataLoadermatplotlib.use('tkAgg')# 设置图形配置
config = {"font.family": 'serif',"mathtext.fontset": 'stix',"font.serif": ['SimSun'],'axes.unicode_minus': False
}
matplotlib.rcParams.update(config)def mymap(labels):return np.where(labels < 10, labels, 0)# 数据加载
path = "d:\\JD\\Documents\\大学等等等\\自学部分\\机器学习自学画图\\手写数字识别\\ex3data1.xlsx"
data = pd.read_excel(path)
data = np.array(data, dtype=np.float32)
x = data[:, :-1]
labels = data[:, -1]
labels = mymap(labels)# 转换为Tensor
x = torch.tensor(x, dtype=torch.float32)
labels = torch.tensor(labels, dtype=torch.long)# 创建Dataset和Dataloader
dataset = TensorDataset(x, labels)
train_loader = DataLoader(dataset, batch_size=20, shuffle=True)# 检查GPU是否可用
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")# 定义模型
my_nn = torch.nn.Sequential(torch.nn.Linear(400, 128),torch.nn.Sigmoid(),torch.nn.Linear(128, 256),torch.nn.Sigmoid(),torch.nn.Linear(256, 512),torch.nn.Sigmoid(),torch.nn.Linear(512, 10)
).to(device)# 加载预训练模型
my_nn.load_state_dict(torch.load('model.pth'))
my_nn.eval() # 切换至评估模式# 准备选取数据进行预测
sample_indices = np.random.choice(len(dataset), 50, replace=False) # 随机选择50个样本
sample_images = x[sample_indices].to(device) # 选择样本并移动到GPU
sample_labels = labels[sample_indices].numpy() # 真实标签# 进行预测
with torch.no_grad(): # 禁用梯度计算predictions = my_nn(sample_images)predicted_labels = torch.argmax(predictions, dim=1).cpu().numpy() # 获取预测的标签# 绘制图像
plt.figure(figsize=(10, 10))
for i in range(50):plt.subplot(10, 5, i + 1) # 10行5列的子图plt.imshow(sample_images[i].cpu().reshape(20, 20), cmap='gray') # 还原为20x20图像plt.title(f'Predicted: {predicted_labels[i]}', fontsize=8)plt.axis('off') # 关闭坐标轴plt.tight_layout() # 调整子图间距
plt.show()
Iteration 0, Loss: 0.8472495079040527
Iteration 20, Loss: 0.014742681756615639
Iteration 40, Loss: 0.00011596851982176304
Iteration 60, Loss: 9.278443030780181e-05
Iteration 80, Loss: 1.3701709576707799e-05
Iteration 100, Loss: 5.019319928578625e-07
Iteration 120, Loss: 0.0
Iteration 140, Loss: 0.0
Iteration 160, Loss: 1.2548344585638915e-08
Iteration 180, Loss: 1.700657230685465e-05
预测准确率: 100.00%

下面使用已经训练好的模型,进行再次测试:
import pandas as pd
import numpy as np
import torch
import matplotlib
import matplotlib.pyplot as plt
from torch.utils.data import TensorDataset, DataLoadermatplotlib.use('tkAgg')# 设置图形配置
config = {"font.family": 'serif',"mathtext.fontset": 'stix',"font.serif": ['SimSun'],'axes.unicode_minus': False
}
matplotlib.rcParams.update(config)def mymap(labels):return np.where(labels < 10, labels, 0)# 数据加载
path = "d:\\JD\\Documents\\大学等等等\\自学部分\\机器学习自学画图\\手写数字识别\\ex3data1.xlsx"
data = pd.read_excel(path)
data = np.array(data, dtype=np.float32)
x = data[:, :-1]
labels = data[:, -1]
labels = mymap(labels)# 转换为Tensor
x = torch.tensor(x, dtype=torch.float32)
labels = torch.tensor(labels, dtype=torch.long)# 创建Dataset和Dataloader
dataset = TensorDataset(x, labels)
train_loader = DataLoader(dataset, batch_size=20, shuffle=True)# 检查GPU是否可用
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")# 定义模型
my_nn = torch.nn.Sequential(torch.nn.Linear(400, 128),torch.nn.Sigmoid(),torch.nn.Linear(128, 256),torch.nn.Sigmoid(),torch.nn.Linear(256, 512),torch.nn.Sigmoid(),torch.nn.Linear(512, 10)
).to(device)# 加载预训练模型
my_nn.load_state_dict(torch.load('model.pth'))
my_nn.eval() # 切换至评估模式# 准备选取数据进行预测
sample_indices = np.random.choice(len(dataset), 50, replace=False) # 随机选择50个样本
sample_images = x[sample_indices].to(device) # 选择样本并移动到GPU
sample_labels = labels[sample_indices].numpy() # 真实标签# 进行预测
with torch.no_grad(): # 禁用梯度计算predictions = my_nn(sample_images)predicted_labels = torch.argmax(predictions, dim=1).cpu().numpy() # 获取预测的标签plt.figure(figsize=(16, 10))
for i in range(20):plt.subplot(4, 5, i + 1) # 4行5列的子图plt.imshow(sample_images[i].cpu().reshape(20, 20), cmap='gray') # 还原为20x20图像plt.title(f'True: {sample_labels[i]}, Pred: {predicted_labels[i]}', fontsize=12) # 标题中显示真实值和预测值plt.axis('off') # 关闭坐标轴plt.tight_layout() # 调整子图间距
plt.show()

相关文章:
基于pytorch的手写数字识别
import pandas as pd import numpy as np import torch import matplotlib import matplotlib.pyplot as plt from torch.utils.data import TensorDataset, DataLoadermatplotlib.use(tkAgg)# 设置图形配置 config {"font.family": serif,"mathtext.fontset&q…...
MySQL 实验 7:索引的操作
MySQL 实验 7:索引的操作 索引是对数据表中一列或多列的值进行排序的一种结构,索引可以大大提高 MySQL 的检索速度。合理使用索引,可以大大提升 SQL 查询的性能。 索引好比是一本书前面的目录,假如我们需要从书籍查找与 xx 相关…...
为Floorp浏览器添加搜索引擎及搜索栏相关设置. 2024-10-05
Floorp浏览器开源项目地址: https://github.com/floorp-Projects/floorp/ 1.第一步 为Floorp浏览器添加搜索栏 (1.工具栏空白处 次键选择 定制工具栏 (2. 把 搜索框 拖动至工具栏 2.添加搜索引擎 以添加 搜狗搜索 为例 (1.访问 搜索引擎网址 搜狗搜索引擎 - 上网从搜狗开始 (2…...
如何设置WSL Ubuntu在Windows开机时自动启动
如何设置WSL Ubuntu在Windows开机时自动启动 步骤详解1. 创建批处理脚本2. 添加到Windows启动项 注意事项结语 在使用Windows Subsystem for Linux (WSL) 时,我们可能希望Ubuntu能够在Windows启动时自动运行。本文将介绍如何实现这一功能,让您的开发环境更加便捷。 步骤详解 …...
使用TensorBoard可视化模型
目录 TensorBoard简介 神经网络模型 可视化 轮次-损失曲线 轮次-准确率曲线 轮次-学习率曲线 迭代-评估准确率曲线 迭代-评估损失曲线 TensorBoard简介 TensorBoard是一款出色的交互式的模型可视化工具。安装TensorFlow时,会自动安装TensorBoard。如图: TensorFlow可…...
《深度学习》OpenCV 图像拼接 原理、参数解析、案例实现
目录 一、图像拼接 1、直接看案例 图1与图2展示: 合并完结果: 2、什么是图像拼接 3、图像拼接步骤 1)加载图像 2)特征点检测与描述 3)特征点匹配 4)图像配准 5)图像变换和拼接 6&am…...
Hive数仓操作(三)
一、Hive 数据库操作 1. 创建数据库 基本创建数据库命令: CREATE DATABASE bigdata;说明: 数据库会在 HDFS 中以目录的形式创建和保存,数据库名称会存储在 Hive 的元数据中。如果不指定目录,数据库将在 /user/hive/warehouse 下…...
TDSQL-C电商可视化,重塑电商决策新纪元
前言: 在数字化浪潮席卷全球的今天,电子商务行业以其独特的魅力和无限潜力,成为了推动全球经济增长的重要引擎。然而,随着业务规模的急剧扩张,海量数据的涌现给电商企业带来了前所未有的挑战与机遇。如何高效地处理、…...
翔云 OCR:发票识别与验真
在数字化时代,高效处理大量文档和数据成为企业和个人的迫切需求。翔云 OCR 作为一款强大的光学字符识别工具,在发票识别及验真方面表现出色,为我们带来了极大的便利。 一、翔云 OCR 简介 翔云 OCR 是一款基于先进的人工智能技术开发的文字识别…...
HTML ASCII:Web 开发中的字符编码基础
HTML ASCII:Web 开发中的字符编码基础 ASCII,全称为美国信息交换标准代码(American Standard Code for Information Interchange),是一种用于电子通信的字符编码标准。它最初于1963年提出,用于在不同的计算…...
Meta 首个多模态大模型一键启动!首个多针刺绣数据集上线,含超 30k 张图片
小扎在 Meta Connect 2024 主题演讲中宣布推出首个多模态大模型 Llama 3.2 vision!该模型有 11B 和 90B 两个版本,成为首批支持多模态任务的 Llama 系列模型,根据官方数据,这两个开原模型的性能已超越闭源模型。 小编已经迫不及待…...
阿里云ECS服务器仿真
1.首先使用qemu-img对RAW镜像进行转换,qemu-img convert -O vmdk 1.raw 2.vmdk 2.使用WinHex对镜像的root密码进行删除 3.由于这次阿里云ECS使用了CONFIG_SYSTEM_TRUSTED_KEYS验证,无法直接仿真,需使用live系统对内核进行修改。分为以下几步&…...
如何为树莓派安装操作系统,以及远程操控树莓派的两种方法,无线操控和插网线操控
文章目录 一、下载树莓派的系统二、将文件下载到SD卡中1.使用官方软件2.其他选择 三、远程连接电脑安装vnc-viewer1.无线操作(配置树莓派,开启VNC)电脑远程配置2.有线连接(需要一根网线) 总结 一、下载树莓派的系统 下…...
【最新华为OD机试E卷-支持在线评测】简单的自动曝光(100分)多语言题解-(Python/C/JavaScript/Java/Cpp)
🍭 大家好这里是春秋招笔试突围 ,一枚热爱算法的程序员 💻 ACM金牌🏅️团队 | 大厂实习经历 | 多年算法竞赛经历 ✨ 本系列打算持续跟新华为OD-E/D卷的多语言AC题解 🧩 大部分包含 Python / C / Javascript / Java / Cpp 多语言代码 👏 感谢大家的订阅➕ 和 喜欢�…...
每日一练:等差数列划分
413. 等差数列划分 - 力扣(LeetCode) 题目要求: 如果一个数列 至少有三个元素 ,并且任意两个相邻元素之差相同,则称该数列为等差数列。 例如,[1,3,5,7,9]、[7,7,7,7] 和 [3,-1,-5,-9] 都是等差数列。 给…...
Kotlin真·全平台——Kotlin Compose Multiplatform Mobile(kotlin跨平台方案、KMP、KMM)
前言 随着kotlin代码跨平台方案的推出,kotlin跨平台一度引起不少波澜。但波澜终归没有掀起太大的风浪,作为一个敏捷型开发的公司,依然少不了Android和iOS的同步开发,实际成本和效益并没有太多变化。所以对于大多数公司来说依然风平…...
unity 默认渲染管线材质球的材质通道,材质球的材质通道
标准渲染管线——材质球的材质通道 文档,与内容无关,是介绍材质球的属性的。 https://docs.unity3d.com/2022.1/Documentation/Manual/StandardShaderMaterialParameters.html游戏资源中常见的贴图类型 https://zhuanlan.zhihu.com/p/260973533 十大贴图…...
PostgreSQL升级:使用pg_upgrade进行大版本(16.3)升级(17.0)
1.pg_upgrade工具介绍 pg_upgrade 会创建新的系统表,并以重用旧的数据文件的方式进行升级。 pg_upgrade 的参数选项如下: -b bindir,--old-bindirbindir:旧的 PostgreSQL 可执行文件目录; -B bindir,--new-…...
userdel命令:删除指定Linux用户
一、命令简介 userdel 命令用于删除 Linux 系统中的用户账号。当您不再需要某个用户账号时,可以使用 userdel 命令将其从系统中删除。 二、命令参数 userdel [选项] 用户名一些常用的选项包括: -r, --remove: 删除用户的家目录及邮件目录。…...
QT系统学习篇(1)
一、什么是Qt、Qt的优势 QT是一个跨平台的C图形用户界面库,目前包括Qt Creator、Qt Designer等等快速开发工具。支持所有Linux/Unix系统,还支持windows平台。Qt很容易扩展,并且允许真正的组件编程。(军工企业项目开发基本离不开Q…...
RestClient
什么是RestClient RestClient 是 Elasticsearch 官方提供的 Java 低级 REST 客户端,它允许HTTP与Elasticsearch 集群通信,而无需处理 JSON 序列化/反序列化等底层细节。它是 Elasticsearch Java API 客户端的基础。 RestClient 主要特点 轻量级ÿ…...
java_网络服务相关_gateway_nacos_feign区别联系
1. spring-cloud-starter-gateway 作用:作为微服务架构的网关,统一入口,处理所有外部请求。 核心能力: 路由转发(基于路径、服务名等)过滤器(鉴权、限流、日志、Header 处理)支持负…...
大型活动交通拥堵治理的视觉算法应用
大型活动下智慧交通的视觉分析应用 一、背景与挑战 大型活动(如演唱会、马拉松赛事、高考中考等)期间,城市交通面临瞬时人流车流激增、传统摄像头模糊、交通拥堵识别滞后等问题。以演唱会为例,暖城商圈曾因观众集中离场导致周边…...
深入浅出:JavaScript 中的 `window.crypto.getRandomValues()` 方法
深入浅出:JavaScript 中的 window.crypto.getRandomValues() 方法 在现代 Web 开发中,随机数的生成看似简单,却隐藏着许多玄机。无论是生成密码、加密密钥,还是创建安全令牌,随机数的质量直接关系到系统的安全性。Jav…...
1688商品列表API与其他数据源的对接思路
将1688商品列表API与其他数据源对接时,需结合业务场景设计数据流转链路,重点关注数据格式兼容性、接口调用频率控制及数据一致性维护。以下是具体对接思路及关键技术点: 一、核心对接场景与目标 商品数据同步 场景:将1688商品信息…...
HTML 列表、表格、表单
1 列表标签 作用:布局内容排列整齐的区域 列表分类:无序列表、有序列表、定义列表。 例如: 1.1 无序列表 标签:ul 嵌套 li,ul是无序列表,li是列表条目。 注意事项: ul 标签里面只能包裹 li…...
微信小程序 - 手机震动
一、界面 <button type"primary" bindtap"shortVibrate">短震动</button> <button type"primary" bindtap"longVibrate">长震动</button> 二、js逻辑代码 注:文档 https://developers.weixin.qq…...
【论文笔记】若干矿井粉尘检测算法概述
总的来说,传统机器学习、传统机器学习与深度学习的结合、LSTM等算法所需要的数据集来源于矿井传感器测量的粉尘浓度,通过建立回归模型来预测未来矿井的粉尘浓度。传统机器学习算法性能易受数据中极端值的影响。YOLO等计算机视觉算法所需要的数据集来源于…...
【JavaWeb】Docker项目部署
引言 之前学习了Linux操作系统的常见命令,在Linux上安装软件,以及如何在Linux上部署一个单体项目,大多数同学都会有相同的感受,那就是麻烦。 核心体现在三点: 命令太多了,记不住 软件安装包名字复杂&…...
水泥厂自动化升级利器:Devicenet转Modbus rtu协议转换网关
在水泥厂的生产流程中,工业自动化网关起着至关重要的作用,尤其是JH-DVN-RTU疆鸿智能Devicenet转Modbus rtu协议转换网关,为水泥厂实现高效生产与精准控制提供了有力支持。 水泥厂设备众多,其中不少设备采用Devicenet协议。Devicen…...
