当前位置: 首页 > news >正文

基于pytorch的手写数字识别

import pandas as pd
import numpy as np
import torch
import matplotlib
import matplotlib.pyplot as plt
from torch.utils.data import TensorDataset, DataLoadermatplotlib.use('tkAgg')# 设置图形配置
config = {"font.family": 'serif',"mathtext.fontset": 'stix',"font.serif": ['SimSun'],'axes.unicode_minus': False
}
matplotlib.rcParams.update(config)def mymap(labels):return np.where(labels < 10, labels, 0)# 数据加载
path = "d:\\JD\\Documents\\大学等等等\\自学部分\\机器学习自学画图\\手写数字识别\\ex3data1.xlsx"
data = pd.read_excel(path)
data = np.array(data, dtype=np.float32)
x = data[:, :-1]
labels = data[:, -1]
labels = mymap(labels)# 转换为Tensor
x = torch.tensor(x, dtype=torch.float32)
labels = torch.tensor(labels, dtype=torch.long)# 创建Dataset和Dataloader
dataset = TensorDataset(x, labels)
train_loader = DataLoader(dataset, batch_size=20, shuffle=True)# 检查GPU是否可用
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")# 定义模型
my_nn = torch.nn.Sequential(torch.nn.Linear(400, 128),torch.nn.Sigmoid(),torch.nn.Linear(128, 256),torch.nn.Sigmoid(),torch.nn.Linear(256, 512),torch.nn.Sigmoid(),torch.nn.Linear(512, 10)
).to(device)# 加载预训练模型
my_nn.load_state_dict(torch.load('model.pth'))
my_nn.eval()  # 切换至评估模式# 准备选取数据进行预测
sample_indices = np.random.choice(len(dataset), 50, replace=False)  # 随机选择50个样本
sample_images = x[sample_indices].to(device)  # 选择样本并移动到GPU
sample_labels = labels[sample_indices].numpy()  # 真实标签# 进行预测
with torch.no_grad():  # 禁用梯度计算predictions = my_nn(sample_images)predicted_labels = torch.argmax(predictions, dim=1).cpu().numpy()  # 获取预测的标签# 绘制图像
plt.figure(figsize=(10, 10))
for i in range(50):plt.subplot(10, 5, i + 1)  # 10行5列的子图plt.imshow(sample_images[i].cpu().reshape(20, 20), cmap='gray')  # 还原为20x20图像plt.title(f'Predicted: {predicted_labels[i]}', fontsize=8)plt.axis('off')  # 关闭坐标轴plt.tight_layout()  # 调整子图间距
plt.show()

Iteration 0, Loss: 0.8472495079040527
Iteration 20, Loss: 0.014742681756615639
Iteration 40, Loss: 0.00011596851982176304
Iteration 60, Loss: 9.278443030780181e-05
Iteration 80, Loss: 1.3701709576707799e-05
Iteration 100, Loss: 5.019319928578625e-07
Iteration 120, Loss: 0.0
Iteration 140, Loss: 0.0
Iteration 160, Loss: 1.2548344585638915e-08
Iteration 180, Loss: 1.700657230685465e-05
预测准确率: 100.00%

下面使用已经训练好的模型,进行再次测试:

import pandas as pd
import numpy as np
import torch
import matplotlib
import matplotlib.pyplot as plt
from torch.utils.data import TensorDataset, DataLoadermatplotlib.use('tkAgg')# 设置图形配置
config = {"font.family": 'serif',"mathtext.fontset": 'stix',"font.serif": ['SimSun'],'axes.unicode_minus': False
}
matplotlib.rcParams.update(config)def mymap(labels):return np.where(labels < 10, labels, 0)# 数据加载
path = "d:\\JD\\Documents\\大学等等等\\自学部分\\机器学习自学画图\\手写数字识别\\ex3data1.xlsx"
data = pd.read_excel(path)
data = np.array(data, dtype=np.float32)
x = data[:, :-1]
labels = data[:, -1]
labels = mymap(labels)# 转换为Tensor
x = torch.tensor(x, dtype=torch.float32)
labels = torch.tensor(labels, dtype=torch.long)# 创建Dataset和Dataloader
dataset = TensorDataset(x, labels)
train_loader = DataLoader(dataset, batch_size=20, shuffle=True)# 检查GPU是否可用
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")# 定义模型
my_nn = torch.nn.Sequential(torch.nn.Linear(400, 128),torch.nn.Sigmoid(),torch.nn.Linear(128, 256),torch.nn.Sigmoid(),torch.nn.Linear(256, 512),torch.nn.Sigmoid(),torch.nn.Linear(512, 10)
).to(device)# 加载预训练模型
my_nn.load_state_dict(torch.load('model.pth'))
my_nn.eval()  # 切换至评估模式# 准备选取数据进行预测
sample_indices = np.random.choice(len(dataset), 50, replace=False)  # 随机选择50个样本
sample_images = x[sample_indices].to(device)  # 选择样本并移动到GPU
sample_labels = labels[sample_indices].numpy()  # 真实标签# 进行预测
with torch.no_grad():  # 禁用梯度计算predictions = my_nn(sample_images)predicted_labels = torch.argmax(predictions, dim=1).cpu().numpy()  # 获取预测的标签plt.figure(figsize=(16, 10))
for i in range(20):plt.subplot(4, 5, i + 1)  # 4行5列的子图plt.imshow(sample_images[i].cpu().reshape(20, 20), cmap='gray')  # 还原为20x20图像plt.title(f'True: {sample_labels[i]}, Pred: {predicted_labels[i]}', fontsize=12)  # 标题中显示真实值和预测值plt.axis('off')  # 关闭坐标轴plt.tight_layout()  # 调整子图间距
plt.show()

相关文章:

基于pytorch的手写数字识别

import pandas as pd import numpy as np import torch import matplotlib import matplotlib.pyplot as plt from torch.utils.data import TensorDataset, DataLoadermatplotlib.use(tkAgg)# 设置图形配置 config {"font.family": serif,"mathtext.fontset&q…...

MySQL 实验 7:索引的操作

MySQL 实验 7&#xff1a;索引的操作 索引是对数据表中一列或多列的值进行排序的一种结构&#xff0c;索引可以大大提高 MySQL 的检索速度。合理使用索引&#xff0c;可以大大提升 SQL 查询的性能。 索引好比是一本书前面的目录&#xff0c;假如我们需要从书籍查找与 xx 相关…...

为Floorp浏览器添加搜索引擎及搜索栏相关设置. 2024-10-05

Floorp浏览器开源项目地址: https://github.com/floorp-Projects/floorp/ 1.第一步 为Floorp浏览器添加搜索栏 (1.工具栏空白处 次键选择 定制工具栏 (2. 把 搜索框 拖动至工具栏 2.添加搜索引擎 以添加 搜狗搜索 为例 (1.访问 搜索引擎网址 搜狗搜索引擎 - 上网从搜狗开始 (2…...

如何设置WSL Ubuntu在Windows开机时自动启动

如何设置WSL Ubuntu在Windows开机时自动启动 步骤详解1. 创建批处理脚本2. 添加到Windows启动项 注意事项结语 在使用Windows Subsystem for Linux (WSL) 时,我们可能希望Ubuntu能够在Windows启动时自动运行。本文将介绍如何实现这一功能,让您的开发环境更加便捷。 步骤详解 …...

使用TensorBoard可视化模型

目录 TensorBoard简介 神经网络模型 可视化 轮次-损失曲线 轮次-准确率曲线 轮次-学习率曲线 迭代-评估准确率曲线 迭代-评估损失曲线 TensorBoard简介 TensorBoard是一款出色的交互式的模型可视化工具。安装TensorFlow时,会自动安装TensorBoard。如图: TensorFlow可…...

《深度学习》OpenCV 图像拼接 原理、参数解析、案例实现

目录 一、图像拼接 1、直接看案例 图1与图2展示&#xff1a; 合并完结果&#xff1a; 2、什么是图像拼接 3、图像拼接步骤 1&#xff09;加载图像 2&#xff09;特征点检测与描述 3&#xff09;特征点匹配 4&#xff09;图像配准 5&#xff09;图像变换和拼接 6&am…...

Hive数仓操作(三)

一、Hive 数据库操作 1. 创建数据库 基本创建数据库命令&#xff1a; CREATE DATABASE bigdata;说明&#xff1a; 数据库会在 HDFS 中以目录的形式创建和保存&#xff0c;数据库名称会存储在 Hive 的元数据中。如果不指定目录&#xff0c;数据库将在 /user/hive/warehouse 下…...

TDSQL-C电商可视化,重塑电商决策新纪元

前言&#xff1a; 在数字化浪潮席卷全球的今天&#xff0c;电子商务行业以其独特的魅力和无限潜力&#xff0c;成为了推动全球经济增长的重要引擎。然而&#xff0c;随着业务规模的急剧扩张&#xff0c;海量数据的涌现给电商企业带来了前所未有的挑战与机遇。如何高效地处理、…...

翔云 OCR:发票识别与验真

在数字化时代&#xff0c;高效处理大量文档和数据成为企业和个人的迫切需求。翔云 OCR 作为一款强大的光学字符识别工具&#xff0c;在发票识别及验真方面表现出色&#xff0c;为我们带来了极大的便利。 一、翔云 OCR 简介 翔云 OCR 是一款基于先进的人工智能技术开发的文字识别…...

HTML ASCII:Web 开发中的字符编码基础

HTML ASCII&#xff1a;Web 开发中的字符编码基础 ASCII&#xff0c;全称为美国信息交换标准代码&#xff08;American Standard Code for Information Interchange&#xff09;&#xff0c;是一种用于电子通信的字符编码标准。它最初于1963年提出&#xff0c;用于在不同的计算…...

Meta 首个多模态大模型一键启动!首个多针刺绣数据集上线,含超 30k 张图片

小扎在 Meta Connect 2024 主题演讲中宣布推出首个多模态大模型 Llama 3.2 vision&#xff01;该模型有 11B 和 90B 两个版本&#xff0c;成为首批支持多模态任务的 Llama 系列模型&#xff0c;根据官方数据&#xff0c;这两个开原模型的性能已超越闭源模型。 小编已经迫不及待…...

阿里云ECS服务器仿真

1.首先使用qemu-img对RAW镜像进行转换&#xff0c;qemu-img convert -O vmdk 1.raw 2.vmdk 2.使用WinHex对镜像的root密码进行删除 3.由于这次阿里云ECS使用了CONFIG_SYSTEM_TRUSTED_KEYS验证&#xff0c;无法直接仿真&#xff0c;需使用live系统对内核进行修改。分为以下几步&…...

如何为树莓派安装操作系统,以及远程操控树莓派的两种方法,无线操控和插网线操控

文章目录 一、下载树莓派的系统二、将文件下载到SD卡中1.使用官方软件2.其他选择 三、远程连接电脑安装vnc-viewer1.无线操作&#xff08;配置树莓派&#xff0c;开启VNC&#xff09;电脑远程配置2.有线连接&#xff08;需要一根网线&#xff09; 总结 一、下载树莓派的系统 下…...

【最新华为OD机试E卷-支持在线评测】简单的自动曝光(100分)多语言题解-(Python/C/JavaScript/Java/Cpp)

🍭 大家好这里是春秋招笔试突围 ,一枚热爱算法的程序员 💻 ACM金牌🏅️团队 | 大厂实习经历 | 多年算法竞赛经历 ✨ 本系列打算持续跟新华为OD-E/D卷的多语言AC题解 🧩 大部分包含 Python / C / Javascript / Java / Cpp 多语言代码 👏 感谢大家的订阅➕ 和 喜欢�…...

每日一练:等差数列划分

413. 等差数列划分 - 力扣&#xff08;LeetCode&#xff09; 题目要求&#xff1a; 如果一个数列 至少有三个元素 &#xff0c;并且任意两个相邻元素之差相同&#xff0c;则称该数列为等差数列。 例如&#xff0c;[1,3,5,7,9]、[7,7,7,7] 和 [3,-1,-5,-9] 都是等差数列。 给…...

Kotlin真·全平台——Kotlin Compose Multiplatform Mobile(kotlin跨平台方案、KMP、KMM)

前言 随着kotlin代码跨平台方案的推出&#xff0c;kotlin跨平台一度引起不少波澜。但波澜终归没有掀起太大的风浪&#xff0c;作为一个敏捷型开发的公司&#xff0c;依然少不了Android和iOS的同步开发&#xff0c;实际成本和效益并没有太多变化。所以对于大多数公司来说依然风平…...

unity 默认渲染管线材质球的材质通道,材质球的材质通道

标准渲染管线——材质球的材质通道 文档&#xff0c;与内容无关&#xff0c;是介绍材质球的属性的。 https://docs.unity3d.com/2022.1/Documentation/Manual/StandardShaderMaterialParameters.html游戏资源中常见的贴图类型 https://zhuanlan.zhihu.com/p/260973533 十大贴图…...

PostgreSQL升级:使用pg_upgrade进行大版本(16.3)升级(17.0)

1.pg_upgrade工具介绍 pg_upgrade 会创建新的系统表&#xff0c;并以重用旧的数据文件的方式进行升级。 pg_upgrade 的参数选项如下&#xff1a; -b bindir&#xff0c;--old-bindirbindir&#xff1a;旧的 PostgreSQL 可执行文件目录&#xff1b; -B bindir&#xff0c;--new-…...

userdel命令:删除指定Linux用户

一、命令简介 ​userdel​ 命令用于删除 Linux 系统中的用户账号。当您不再需要某个用户账号时&#xff0c;可以使用 userdel​ 命令将其从系统中删除。 ‍ 二、命令参数 userdel [选项] 用户名一些常用的选项包括&#xff1a; -r, --remove: 删除用户的家目录及邮件目录。…...

QT系统学习篇(1)

一、什么是Qt、Qt的优势 QT是一个跨平台的C图形用户界面库&#xff0c;目前包括Qt Creator、Qt Designer等等快速开发工具。支持所有Linux/Unix系统&#xff0c;还支持windows平台。Qt很容易扩展&#xff0c;并且允许真正的组件编程。&#xff08;军工企业项目开发基本离不开Q…...

使用docker在3台服务器上搭建基于redis 6.x的一主两从三台均是哨兵模式

一、环境及版本说明 如果服务器已经安装了docker,则忽略此步骤,如果没有安装,则可以按照一下方式安装: 1. 在线安装(有互联网环境): 请看我这篇文章 传送阵>> 点我查看 2. 离线安装(内网环境):请看我这篇文章 传送阵>> 点我查看 说明&#xff1a;假设每台服务器已…...

深度学习在微纳光子学中的应用

深度学习在微纳光子学中的主要应用方向 深度学习与微纳光子学的结合主要集中在以下几个方向&#xff1a; 逆向设计 通过神经网络快速预测微纳结构的光学响应&#xff0c;替代传统耗时的数值模拟方法。例如设计超表面、光子晶体等结构。 特征提取与优化 从复杂的光学数据中自…...

XCTF-web-easyupload

试了试php&#xff0c;php7&#xff0c;pht&#xff0c;phtml等&#xff0c;都没有用 尝试.user.ini 抓包修改将.user.ini修改为jpg图片 在上传一个123.jpg 用蚁剑连接&#xff0c;得到flag...

R语言AI模型部署方案:精准离线运行详解

R语言AI模型部署方案:精准离线运行详解 一、项目概述 本文将构建一个完整的R语言AI部署解决方案,实现鸢尾花分类模型的训练、保存、离线部署和预测功能。核心特点: 100%离线运行能力自包含环境依赖生产级错误处理跨平台兼容性模型版本管理# 文件结构说明 Iris_AI_Deployme…...

shell脚本--常见案例

1、自动备份文件或目录 2、批量重命名文件 3、查找并删除指定名称的文件&#xff1a; 4、批量删除文件 5、查找并替换文件内容 6、批量创建文件 7、创建文件夹并移动文件 8、在文件夹中查找文件...

通过Wrangler CLI在worker中创建数据库和表

官方使用文档&#xff1a;Getting started Cloudflare D1 docs 创建数据库 在命令行中执行完成之后&#xff0c;会在本地和远程创建数据库&#xff1a; npx wranglerlatest d1 create prod-d1-tutorial 在cf中就可以看到数据库&#xff1a; 现在&#xff0c;您的Cloudfla…...

对WWDC 2025 Keynote 内容的预测

借助我们以往对苹果公司发展路径的深入研究经验&#xff0c;以及大语言模型的分析能力&#xff0c;我们系统梳理了多年来苹果 WWDC 主题演讲的规律。在 WWDC 2025 即将揭幕之际&#xff0c;我们让 ChatGPT 对今年的 Keynote 内容进行了一个初步预测&#xff0c;聊作存档。等到明…...

Linux-07 ubuntu 的 chrome 启动不了

文章目录 问题原因解决步骤一、卸载旧版chrome二、重新安装chorme三、启动不了&#xff0c;报错如下四、启动不了&#xff0c;解决如下 总结 问题原因 在应用中可以看到chrome&#xff0c;但是打不开(说明&#xff1a;原来的ubuntu系统出问题了&#xff0c;这个是备用的硬盘&a…...

【Oracle】分区表

个人主页&#xff1a;Guiat 归属专栏&#xff1a;Oracle 文章目录 1. 分区表基础概述1.1 分区表的概念与优势1.2 分区类型概览1.3 分区表的工作原理 2. 范围分区 (RANGE Partitioning)2.1 基础范围分区2.1.1 按日期范围分区2.1.2 按数值范围分区 2.2 间隔分区 (INTERVAL Partit…...

Unity | AmplifyShaderEditor插件基础(第七集:平面波动shader)

目录 一、&#x1f44b;&#x1f3fb;前言 二、&#x1f608;sinx波动的基本原理 三、&#x1f608;波动起来 1.sinx节点介绍 2.vertexPosition 3.集成Vector3 a.节点Append b.连起来 4.波动起来 a.波动的原理 b.时间节点 c.sinx的处理 四、&#x1f30a;波动优化…...