强化学习笔记之【Q-learning算法和DQN算法】
强化学习笔记(一)——Q-learning和DQN算法核心公式
文章目录
- 强化学习笔记(一)——Q-learning和DQN算法核心公式
- 前言:
- Q-learning算法
- DQN算法
前言:
强化学习领域,繁冗复杂的大段代码里面,核心的数学公式往往只有20~40行,剩下的代码都是为了应用这些数学公式而服务的
这可比遥感图像难太多了,乱七八糟的数学公式看得头大

本文初编辑于2024.10.5
CSDN主页:https://blog.csdn.net/rvdgdsva
博客园主页:https://www.cnblogs.com/hassle
博客园本文链接:
Q-learning算法
需要先看:
Deep Reinforcement Learning (DRL) 算法在 PyTorch 中的实现与应用【Q-learning部分】
7个最流行的强化学习算法实战案例(附 Python 代码)【Q-learning部分】【不要看这个的DQN部分,里面用的是单网络】
q [ c u r r e n t ‾ s t a t e , a c t i o n ] = q [ c u r r e n t ‾ s t a t e , a c t i o n ] + l e a r n i n g ‾ r a t e × ( r e w a r d + g a m m a × m a x ( q [ n e x t ‾ s t a t e ] ) − q [ c u r r e n t ‾ s t a t e , a c t i o n ] ) q[current\underline{~}state, action] = \\q[current\underline{~}state, action] + learning\underline{~}rate \times (reward + gamma\times max(q[next\underline{~}state]) - q[current\underline{~}state, action]) q[current state,action]=q[current state,action]+learning rate×(reward+gamma×max(q[next state])−q[current state,action])
- 上述公式为Q-learning算法中的Q值更新公式
- Q-learning算法中的Q值更新公式参数解释:
-
Q[CurrentState, Action]: 这是在当前状态(CurrentState)下,采取特定动作(Action)所对应的Q值。Q值代表了在给定状态下采取该动作的预期累积回报。
-
LearningRate (α): 学习率是一个介于0和1之间的参数,用来控制新信息(即当前的经验和估计的未来回报)对Q值更新的影响。较高的学习率会使得新经验更快速地影响Q值,而较低的学习率则会使得Q值更新更加平滑,减小波动。
-
reward: 这是在执行动作(Action)后获得的即时奖励。它用于衡量该动作的好坏,与环境的反馈直接相关。
-
gamma (γ): 折扣因子是一个介于0和1之间的参数,用于确定未来奖励的重要性。γ越接近1,智能体越重视未来的奖励;γ越接近0,智能体则更关注眼前的即时奖励。
-
max(Q[NextState]): 这是在下一个状态(NextState)中所有可能动作的Q值中的最大值。它表示在下一个状态下预计能获得的最大未来回报。
A c t i o n = a r g m a x ( Q [ C u r r e n t S t a t e ] ) Action = argmax(Q[CurrentState]) Action=argmax(Q[CurrentState])
- 通过上述公式进行Action的选择
个人理解:Q-learning是off-policy算法。reward是现在的行为可见的确定的收益,**gamma*max(Q[NextState])**是预计的未来的总收益(不包括现在,即reward),**Q[CurrentState, Action]**是预计的现在的总收益(包括现在,即reward),此点参考【强化学习】 时序差分TD error的通俗理解,方程的右侧表示Q值的更新。它使用了目前的Q值,加上基于当前获得的奖励和预计的未来奖励的调整。这个调整部分是基于时序差分(即 TD-errors)学习的原则。
DQN算法
需要先看:
Deep Reinforcement Learning (DRL) 算法在 PyTorch 中的实现与应用【DQN部分】【代码中有take_action函数】
【深度强化学习】(1) DQN 模型解析,附Pytorch完整代码【代码实现部分】【代码中DQN网络缺少take_action函数,结合上文看吧】
q ‾ v a l u e s = q ‾ n e t w o r k ( s t a t e ) n e x t ‾ q v a l u e s = t a r g e t ‾ n e t w o r k ( n e x t ‾ s t a t e ) q ‾ t a r g e t = r e w a r d + ( 1 − d o n e ) × g a m m a × n e x t ‾ q v a l u e s . m a x ( ) l o s s = M S E L o s s ( q ‾ v a l u e s , q ‾ t a r g e t ) q\underline{~}values = q\underline{~}network(state)\\ next\underline{~}qvalues= target\underline{~}network(next\underline{~}state)\\q\underline{~}target = reward + (1 - done) \times gamma \times next\underline{~}qvalues.max()\\loss = MSELoss(q\underline{~}values, q\underline{~}target) q values=q network(state)next qvalues=target network(next state)q target=reward+(1−done)×gamma×next qvalues.max()loss=MSELoss(q values,q target)
- 上述公式为深度 Q 网络(DQN)算法中的Q值更新公式
q ‾ v a l u e s = q ‾ n e t w o r k ( s t a t e ) q\underline{~}values = q\underline{~}network(state) q values=q network(state)
- 通过上述公式进行Action的选择,注意这里用的是q_network而不是target_network
大白话解释:
state和action为经验池里面提取的batch,不是某一时刻的state和action
DQN实例化为q_network,输入state对应输出q_values,action也是这个网络给出的
DQN实例化为target_network,输入next_state对应输出next_q_values
next_q_values实例化为q_targets
q_values和q_targets进行q_network的参数更新
- 深度 Q 网络(DQN)算法中的Q值更新公式参数解释:
- target[action]: 这是当前状态下,执行特定动作
action的目标 Q 值。我们希望通过更新这个 Q 值来使其更接近真实的 Q 值。 - reward: 这是在当前状态下执行
action所得到的即时奖励。 - done: 这是一个布尔值,表示当前状态是否是终止状态。如果
done为 1(或 True),表示已经到达终止状态,那么后续不再有奖励;如果为 0(或 False),则表示还有后续状态和奖励。 - self.gamma: 这是折扣因子(通常在 0 到 1 之间),用于控制未来奖励对当前决策的影响。较高的折扣因子意味着更关注未来的奖励。
- next_q_values.max(): 这是在下一个状态中所有可能动作的 Q 值的最大值,表示在下一个状态下能获得的最佳期望奖励。
个人理解:DQN采用双网络,是off-policy算法。一个训练网络仅使用当前数据,对一种state采取最优的action,需要频繁更新。一个目标网络使用历史数据,采取总体最优action,不需要频繁更新。相较于Q-learning,使用Q函数代替了Q矩阵的作用,在状态很多时Q矩阵难以处理,Q函数擅长对复杂情况进行建模。
相关文章:
强化学习笔记之【Q-learning算法和DQN算法】
强化学习笔记(一)——Q-learning和DQN算法核心公式 文章目录 强化学习笔记(一)——Q-learning和DQN算法核心公式前言:Q-learning算法DQN算法 前言: 强化学习领域,繁冗复杂的大段代码里面&#…...
面试经验02
嵌入式简历制作指南与秋招求职建议 引言 秋招季即将到来,许多同学开始准备求职简历。无论你是考研失利准备就业,还是即将毕业寻找实习,一份优秀的简历都是求职的敲门砖。今天,我们将讨论如何制作嵌入式领域的求职简历࿰…...
分层图 的尝试学习 1.0
分层图: 分层图的最短路: 又叫做 扩点最短路。不把实际位置看做是图上的点,而是把实际位置及其状态的组合,(一个点有若干的状态,所以一个点会扩充出来若干点)看做是图上的点,然后搜索…...
第 31 章 javascript 之 XPath
第 31 章 XPath 1.IE 中的 XPath 2.W3C 中的 XPath 3.XPath 跨浏览器兼容 XPath 是一种节点查找手段,对比之前使用标准 DOM 去查找 XML 中的节点方式,大大降低了查找难度,方便开发者使用。但是,DOM3 级以前的标准并没有就 XPa…...
JavaScript中的高阶函数
高阶函数 所谓高阶函数,就是操作函数的函数,它接收一个或多个函数作为参数,并返回一个新函数: 来看一个mapper()函数,将一个数组映射到另一个使用这个函数的数组上: 更常见的例子,它接收两个函…...
Qt6.7开发安卓程序间接连接到MySQL的方法
本文主要描述一种通过间接的方法,使得Qt开发的安卓程序可以直连到Mysql数据库的方法。本文章的方案是通过JAVA代码去连接MySQL数据库,然后C代码去调用JAVA的方法,从而实现QT开发的安卓程序去直连到MySQL数据库。 本文使用 JDBC 结合 JNI&…...
ROW_NUMBER
How to rewrite a query which uses the ROW_NUMBER() window function in versions 5.7 or earlier before window functions were supported e.g., SELECT ROW_NUMBER() OVER (PARTITION BY fieldA) AS rownum, myTable.* FROM myTable; index 用不上的 Solution Assuming…...
Docker技术
目录 Docker的基本概念 Docker的核心原理 Docker的使用场景 Docker的优点 Docker的挑战 为什么使用 环境一致性 快速启动和部署 资源利用率高 支持微服务架构 持续集成与持续交付(CI/CD) 依赖管理 简化部署流程 高效资源管理 生态系统丰富…...
中小企业做网站需要考虑哪些因素?
中小企业在建设网站时,需要考虑的因素有很多。以下是一些主要考虑因素的介绍: 明确建站目的:中小企业需要明确自己建立网站的目的。是为了展示企业形象、推广产品,还是提供客户服务?不同的目的将决定网站的设计和功能…...
【d60】【Java】【力扣】509. 斐波那契数
思路 要做的问题:求F(n), F(n)就等于F(n-1)F(n-2),要把这个F(n-1)F(n-2)当作常量,已经得到的值, 结束条件:如果是第1 第2 个数字的时候,没有n-1和n-2,所以…...
项目-坦克大战学习-游戏结束
当boos受到伤害时游戏结束,游戏结束时我们需要将窗体全部绘制从别的画面,这样我们可以在游戏运行类中的update设置条件,在游戏运行类thread创建一个枚举类型定义是否游戏结束 public enum Game { play, over };//定义现在游戏运行状态 如果…...
MySQL基础之约束
MySQL基础之约束 概述 概念:约束是作用在字段的规则,限制表中数据 演示 # 多个约束之间不需要加逗号 # auto_increment 自增 create table user(id int primary key auto_increment comment 主键,name varchar(10) not null unique comment 姓名,age i…...
2024新版IDEA创建JSP项目
1. 创建项目 依次点击file->new->Project 配置如下信息并点击create创建项目 2. 配置Web项目 点击file->Project Structure 在点击Project Settings->Module右键右边模块名称->ADD->Web 点击Create Artifact 出现如下界面就表示配置完毕,…...
Conda创建,打包,删除环境相关及配置cuda
conda创建新环境Anaconda删除虚拟环境conda删除环境conda环境打包迁移及部署Python | Conda pack 进行环境打包Anaconda创建环境、删除环境、激活环境、退出环境Anaconda环境离线迁移_CondaPackError处理Anaconda环境离线迁移移植Anaconda-用conda创建python虚拟环境anaconda 配…...
Linux和指令初识
前言 Linux是我们在服务器中常用的操作系统,我们有必要对这个操作系统有足够的认识,并且能够使相关的指令操作。今天我们就来简单的认识一下这个操作的前世今生,并且介绍一些基础的指令操作 Linux的前世今生 要说Linux,还得从U…...
Vortex GPGPU的github流程跑通与功能模块波形探索(二)
文章目录 前言一、环境配置和debugging.md文档1.1 调试 Vortex GPU1.1.1测试 RTL 或模拟器 GPU 驱动的更改1.1.2 SimX 调试1.1.3 RTL 调试1.1.4 FPGA 调试1.1.5 分析 Vortex 跟踪日志 二、跑出波形文件和日志文件总结 前言 昨天另辟蹊径地去探索了子模块的波形仿真,…...
【X线源】微焦点X射线源的基本原理
【X线源】微焦点X射线源的基本原理 1.背景2.原理 1.背景 1895年11月8日,德国物理学家威廉伦琴在研究阴极射线时偶然发现了X射线。当时,他注意到阴极射线管附近的荧光屏发出了光,即使它被纸板遮挡住。经过进一步实验,他意识到这种…...
LeetCode hot100---栈专题(C++语言)
1、有效的括号 (1)题目描述以及输入输出 (1)题目描述: 给定一个只包括 (,),{,},[,] 的字符串 s ,判断字符串是否有效。(2)输入输出描述: 输入:s "()&…...
STM32-MPU6050+DAM库源码(江协笔记)
目录 1、MPU6050简介 2、MPU6050参数 3、MPU6050硬件电路 4、MPU6050结构 5、MPU6000和MPU6050的区别 6、MPU6050应用场景 7、MPU6050电气参数 8、MPU6050时钟源选择 9、MPU6050中断源 10、MPU6050的I2C读写操作 11、DMP库移植 1、MPU6050简介 10轴传感器࿱…...
Ruby 数组(Array)
Ruby 数组(Array) 引言 Ruby,作为一种高级编程语言,以其简洁明了的语法和强大的功能而闻名。在Ruby中,数组(Array)是一种基本的数据结构,用于存储一系列有序的元素。本文将深入探讨…...
在HarmonyOS ArkTS ArkUI-X 5.0及以上版本中,手势开发全攻略:
在 HarmonyOS 应用开发中,手势交互是连接用户与设备的核心纽带。ArkTS 框架提供了丰富的手势处理能力,既支持点击、长按、拖拽等基础单一手势的精细控制,也能通过多种绑定策略解决父子组件的手势竞争问题。本文将结合官方开发文档,…...
C++.OpenGL (10/64)基础光照(Basic Lighting)
基础光照(Basic Lighting) 冯氏光照模型(Phong Lighting Model) #mermaid-svg-GLdskXwWINxNGHso {font-family:"trebuchet ms",verdana,arial,sans-serif;font-size:16px;fill:#333;}#mermaid-svg-GLdskXwWINxNGHso .error-icon{fill:#552222;}#mermaid-svg-GLd…...
Git常用命令完全指南:从入门到精通
Git常用命令完全指南:从入门到精通 一、基础配置命令 1. 用户信息配置 # 设置全局用户名 git config --global user.name "你的名字"# 设置全局邮箱 git config --global user.email "你的邮箱example.com"# 查看所有配置 git config --list…...
人工智能 - 在Dify、Coze、n8n、FastGPT和RAGFlow之间做出技术选型
在Dify、Coze、n8n、FastGPT和RAGFlow之间做出技术选型。这些平台各有侧重,适用场景差异显著。下面我将从核心功能定位、典型应用场景、真实体验痛点、选型决策关键点进行拆解,并提供具体场景下的推荐方案。 一、核心功能定位速览 平台核心定位技术栈亮…...
如何做好一份技术文档?从规划到实践的完整指南
如何做好一份技术文档?从规划到实践的完整指南 🌟 嗨,我是IRpickstars! 🌌 总有一行代码,能点亮万千星辰。 🔍 在技术的宇宙中,我愿做永不停歇的探索者。 ✨ 用代码丈量世界&…...
【PX4飞控】mavros gps相关话题分析,经纬度海拔获取方法,卫星数锁定状态获取方法
使用 ROS1-Noetic 和 mavros v1.20.1, 携带经纬度海拔的话题主要有三个: /mavros/global_position/raw/fix/mavros/gpsstatus/gps1/raw/mavros/global_position/global 查看 mavros 源码,来分析他们的发布过程。发现前两个话题都对应了同一…...
可下载旧版app屏蔽更新的app市场
软件介绍 手机用久了,app越来越臃肿,老手机卡顿成常态。这里给大家推荐个改善老手机使用体验的方法,还能帮我们卸载不需要的app。 手机现状 如今的app不断更新,看似在优化,实则内存占用越来越大,对手机性…...
Spring Boot SQL数据库功能详解
Spring Boot自动配置与数据源管理 数据源自动配置机制 当在Spring Boot项目中添加数据库驱动依赖(如org.postgresql:postgresql)后,应用启动时自动配置系统会尝试创建DataSource实现。开发者只需提供基础连接信息: 数据库URL格…...
JS的传统写法 vs 简写形式
一、条件判断与逻辑操作 三元运算符简化条件判断 // 传统写法 let result; if (someCondition) {result yes; } else {result no; }// 简写方式 const result someCondition ? yes : no;短路求值 // 传统写法 if (condition) {doSomething(); }// 简写方式 condition &…...
暴雨新专利解决服务器噪音与性能悖论
6月1日,我国首部数据中心绿色化评价方面国家标准《绿色数据中心评价》正式实施,为我国数据中心的绿色低碳建设提供了明确指引。《评价》首次将噪音控制纳入国家级绿色评价体系,要求从设计隔声结构到运维定期监测实现闭环管控,加速…...
