Jax(Random、Numpy)常用函数
目录
Jax
vmap
Array
reshape
Random
PRNGKey
uniform
normal
split
choice
Numpy
expand_dims
linspace
jax.numpy.linalg[pkg]
dot
matmul
arange
interp
tile
reshape
Jax
jit
jax.jit(fun, in_shardings=UnspecifiedValue, out_shardings=UnspecifiedValue, static_argnums=None, static_argnames=None, donate_argnums=None, donate_argnames=None, keep_unused=False, device=None, backend=None, inline=False, abstracted_axes=None)[source]
注:jax.jit
是 JAX 中的一个装饰器,用于将 Python 函数编译为高效的机器代码,以提高运行速度。JIT(Just-In-Time)编译可以加速函数的执行,尤其是在循环或需要多次调用。
>>>jax.jit(lambda x,y : x + y)
<PjitFunction of <function <lambda> at 0x7ea7b402f130>>
>>>jax.jit(lambda x,y : x + y)(1,2) #process jitfunc -> lambda fun
Array(3, dtype=int32, weak_type=True)
>>>@jax.jitdef fun(x,y):return x + y
>>>fun
<PjitFunction of <function fun at 0x7ea7b402f5b0>>
>>>fun(1,2)
Array(3, dtype=int32, weak_type=True)
vmap
jax.vmap(fun, in_axes=0, out_axes=0, axis_name=None, axis_size=None, spmd_axis_name=None)[source]
注:对函数进行向量化处理,通常用于批量处理数据,而不需要显式地编写循环,函数映射调用,区别于pmap,vmap单个设备(CPU或GPU)上处理批量数据,pmap在多个设备(GPU或TPU)上并行处理数据(分布式)
>>>f_xy = lambda x,y : x + y
>>>x = jax.numpy.array([[1, 2], [3, 4]]) # shape (2, 2)
>>>y = jax.numpy.array([[5, 6], [7, 8]]) # shape (2, 2)# in this x and y array, axis 0 is row , axis 1 is col, ref shape index
# in x and y, axis -1 is shape[-1] , axis -2 is shape[-2]>>>jax.vmap(f_xy,in_axes=(0,0))(x,y) # default out_axes = 0,row ouput
# x row + y row , need x row dim equal y row dim
Array([[ 6, 8],[10, 12]], dtype=int32)
>>>jax.vmap(f_xy,in_axes=(0,0),out_axes=1)(x,y) #show output by col
Array([[ 6, 8],[10, 12]], dtype=int32)
>>>jax.vmap(f_xy,in_axes=(0,1))(x,y)
# x row + y col , need x row's dim equal y col's dim
Array([[ 6, 9],[ 9, 12]], dtype=int32)
>>>jax.vmap(f_xy,in_axes=(0,1),out_axes=1)(x,y) #show output by col
Array([[ 6, 9],[ 9, 12]], dtype=int32)
>>>jax.vmap(f_xy,in_axes=(None,0))(x,y) #no vector x by row or col, x is block
# x block + y row vector, x shape (2,2) , y shape(2,2), need x row equal y row
# return shape(y_dim_2,x_dim_1,x_dim2)
Array([[[ 6, 8],[ 8, 10]],[[ 8, 10],[10, 12]]], dtype=int32)
ref:Learning about JAX :axes in vmap()
Array
reshape
abstract Array.reshape(*args, order='C')[source]
注:Array对象的实例方法,引用jax.numpy.reshape函数
Random
PRNGKey
jax.random.PRNGKey(seed, *, impl=None)[source]#
注:创建一个 PRNG key,作为生成随机数的种子Seed
eg:
>>>jax.random.PRNGKey(0)
Array([0, 0], dtype=uint32)
uniform
jax.random.uniform(key, shape=(), dtype=<class 'float'>, minval=0.0, maxval=1.0)[source]
注:在给定的形状(shape)和数据类型(dtype)下,从 [minval, maxval) 区间内采样均匀分布的随机值
>>>k = jax.random.PRNGKey(0)
>>>jax.random.uniform(k,shape=(1,))
Array([0.41845703], dtype=float32)
normal
normal(key, shape=(), dtype=<class 'float'>)[source]
注:在给定的形状shape和浮点数据类型dtype下,采样标准正态分布的随机值
>>>k = jax.random.PRNGKey(0)
>>>jax.random.normal(k,shape=(1,))
Array([-0.20584226], dtype=float32)
split
jax.random.split(key, num=2)[source]
注:用于生成伪随机数生成器(PRNG)状态的函数。它允许你从一个现有的 PRNG 状态中生成多个新的状态,从而实现随机数的可重复性和并行性。
>>>k = jax.random.PRNGKey(1)
>>>k1,k2 = jax.random.split(k)
>>>k1
Array([2441914641, 1384938218], dtype=uint32)
>>>k2
Array([3819641963, 2025898573], dtype=uint32)
choice
jax.random.choice(key, a, shape=(), replace=True, p=None, axis=0)[source]
注:从给定数组a中按shape生成随机样本,区别于numpy.random.choice函数。default choice one elem。
>>>k = jax.random.PRNGKey(0)
>>>a = jax.numpy.array([1,2,3,4,5,6,7,8,9,0])
>>>jax.random.choice(k,a,(10,)) # random no seq
Array([9, 6, 8, 7, 8, 4, 1, 2, 3, 3], dtype=int32)
>>>jax.random.choice(k,a,(2,5))
Array([[9, 6, 8, 7, 8],[4, 1, 2, 3, 3]], dtype=int32)
Numpy
expand_dims
expand_dims(a, axis)[source]
注:为数组a的维度axis增加1维度
>>>arr = jax.numpy.array([1,2,3])
>>>arr.shape
(3,)
>>>jax.numpy.expand_dims(arr,axis=0)
Array([[1, 2, 3]], dtype=int32)
>>>jax.numpy.expand_dims(arr,axis=0).shape
(1, 3)
>>>jax.numpy.expand_dims(arr,axis=1)
Array([[1],[2],[3]], dtype=int32)
>>>jax.numpy.expand_dims(arr,axis=1).shape
(3, 1)
linspace
linspace(start: ArrayLike, stop: ArrayLike, num: int = 50, endpoint: bool = True, retstep: Literal[False] = False, dtype: DTypeLike | None = None, axis: int = 0, *, device: xc.Device | Sharding | None = None) → Array[source]
注:在给定区间[start,stop]内返回均匀间隔的数字
>>>jax.numpy.linspace(0,1,5)
Array([0. , 0.25, 0.5 , 0.75, 1. ], dtype=float32)
jax.numpy.linalg[pkg]
jax.numpy.linalg
是 JAX 库中用于线性代数操作的模块,对应numpy.linalg库实现
jax.numpy.linalg.cholesky(a, *, upper=False)[source]
注:计算一个正定矩阵A的 Cholesky 分解,得到满足A=L@L.T等式的下三角或上三角矩阵L,@为Python1.5定义的矩阵乘运算(jax.numpy.matmul),L.T为L转置矩阵
>>> d = jax.numpy.array([[2. , 1.],[1. , 2.]])
>>>jax.numpy.linalg.cholesky(d)
Array([[1.4142135 , 0. ],[0.70710677, 1.2247449 ]], dtype=float32)>>>L = jax.numpy.linalg.cholesky(d)
>>>L@L.T
Array([[1.9999999 , 0.99999994],[0.99999994, 2. ]], dtype=float32)
dot
dot(a, b, *, precision=None, preferred_element_type=None)[source]
注:用于计算两个数组的点积(dot product),对于一维数组,它计算的是向量的内积;对于二维数组(矩阵),它计算的是矩阵乘积;对于更高维度的数组,它执行的是逐元素的点积,并在最后一个轴上进行求和
- 对于一维数组(向量):
numpy.dot(a, b)
计算的是向量a
和b
的点积,结果是一个标量。- 对于二维数组(矩阵):
numpy.dot(A, B)
计算的是矩阵A
和B
的乘积,其中A
的列数必须与B
的行数相等。结果是一个新的矩阵。- 对于更高维度的数组:
numpy.dot()
可以进行更复杂的广播和求和运算,但通常用于计算张量积(tensor product)的某个维度上的和。
>>>jax.numpy.dot(jax.numpy.array([1,2,3]),2)
Array([2, 4, 6], dtype=int32)
>>>jax.numpy.dot(jax.numpy.array([1,2,3]),jax.numpy.array([1,2,3]))
Array(14, dtype=int32)
>>>jax.numpy.dot(jax.numpy.array([[1,2,3],[4,5,6]]),jax.numpy.array([1,2,3]))
Array([14, 32], dtype=int32)
>>>jax.numpy.dot(jax.numpy.array([[1,2],[4,5]]),jax.numpy.array([[1,2],[4,5]]))
Array([[ 9, 12],[24, 33]], dtype=int32)
>>>a = jax.numpy.zeros((1,3,2))
>>>b = jax.numpy.zeros((1,2,4))
>>>jax.numpy.dot(a,b).shape
(1, 3, 1, 4) #matmul ret (1,3,4)
matmul
matmul(a, b, *, precision=None, preferred_element_type=None)[source]#
注:于执行矩阵乘法,也称为 @
运算符(在 Python 3.5+ 中引入),对于一维数组(向量),它计算的是内积(与 dot
相同);对于二维数组(矩阵),它计算的是矩阵乘积(与 dot
相同);对于更高维度的数组,它执行的是逐元素的矩阵乘法,并保留其他轴
- 对于一维数组(向量):
numpy.matmul(a, b)
通常不被定义为向量之间的运算,除非a
是一个二维数组(表示多个向量)的单个行或列,并且b
的形状与之兼容。- 对于二维数组(矩阵):
numpy.matmul(A, B)
计算的是矩阵A
和B
的乘积,其中A
的列数必须与B
的行数相等。这与numpy.dot()
对于二维数组的行为相同。- 对于更高维度的数组:
numpy.matmul()
遵循爱因斯坦求和约定(Einstein summation convention)的特定规则,允许在不同维度的数组之间执行矩阵乘法。这包括批处理矩阵乘法,其中每个批次独立地进行乘法运算。
>>>jax.numpy.matmul(jax.numpy.array([1,2,3]),jax.numpy.array([1,2,3]))
Array(14, dtype=int32)
>>>jax.numpy.matmul(jax.numpy.array([[1,2,3],[4,5,6]]),jax.numpy.array([1,2,3]))
Array([14, 32], dtype=int32)
>>>jax.numpy.matmul(jax.numpy.array([[1,2],[4,5]]),jax.numpy.array([[1,2],[4,5]]))
Array([[ 9, 12],[24, 33]], dtype=int32)
>>>a = jax.numpy.zeros((1,3,2))
>>>b = jax.numpy.zeros((1,2,4))
>>>jax.numpy.matmul(a,b).shape
(1, 3, 4) #dot ret (1,3,1,4)
arange
jax.numpy.arange(start, stop=None, step=None, dtype=None, *, device=None)[source]
注:default step 为1,在区间[start,stop)生成步长为1的数组,类似range函数
>>>jax.numpy.arange(0,10,1)
Array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9], dtype=int32)
interp
interp(x, xp, fp, left=None, right=None, period=None)[source]
注:在xp点列表中线性插值x,线性插值满足,xi和xi+1表示xp数组相邻两点,插值x位于两点区间之间,xp点对于y值为fp,线性插值为保持符合fp = fun(xp)两点区间斜率的增量
>>>xp = jax.numpy.arange(0,10,1)
>>>fp = jax.numpy.array(range(0,10,1)) * 2
>>>x = jax.numpy.array([1,2,3])
>>>jax.numpy.interp(x,xp,fp)
Array([2., 4., 6.], dtype=float32)
tile
jax.numpy.tile(A, reps)[source]
注:将A数组按reps重复化生成新Array
a = jax.numpy.array([1,2,3])
>>>jax.numpy.tile(a,2)
Array([1, 2, 3, 1, 2, 3], dtype=int32)
>>>jax.numpy.tile(a,(2,))
Array([1, 2, 3, 1, 2, 3], dtype=int32)
>>>jax.numpy.tile(a,(1,1))
Array([[1, 2, 3]], dtype=int32)
>>>jax.numpy.tile(a,(2,1)) # repeat axis 0 (row) by 2, repeat axis 1 (col) by 1
Array([[1, 2, 3],[1, 2, 3]], dtype=int32)
reshape
jax.numpy.reshape(a, shape=None, order='C', *, newshape=Deprecated, copy=None)[source]
注:从定义Array a的shape形状为shape元组(),支持-1,推断dim数值
>>>a = jax.numpy.array([[1, 2, 3],[4, 5, 6]])
>>>jax.numpy.reshape(a,6) # equal reshape(a,(6,))
Array([1, 2, 3, 4, 5, 6], dtype=int32)
>>>jax.numpy.reshape(a,-1) # equal reshape(a,6) -1 is inferred to be 3
Array([1, 2, 3, 4, 5, 6], dtype=int32)
>>>jax.numpy.reshape(a,(-1,2)) # equal reshape(a,(3,2)) , -1 is inferred to be 3
Array([[1, 2],[3, 4],[5, 6]], dtype=int32)
>>>jax.numpy.reshape(a,(1,-1)) # not (n,) inferred to 2 d
Array([[1, 2, 3, 4, 5, 6]], dtype=int32)
相关文章:
Jax(Random、Numpy)常用函数
目录 Jax vmap Array reshape Random PRNGKey uniform normal split choice Numpy expand_dims linspace jax.numpy.linalg[pkg] dot matmul arange interp tile reshape Jax jit jax.jit(fun, in_shardingsUnspecifiedValue, out_shardingsUnspecifiedVa…...

python-pptx 中 placeholder 和 shape 有什么区别?
在 python-pptx 库中,placeholder 和 shape 是两个核心概念。虽然它们看起来相似,但在功能和作用上存在显著的区别。为了更好地理解这两个概念,我们可以通过它们的定义、使用场景以及实际代码示例来剖析其差异。 Python-pptx 的官网链接&…...

王者农药更新版
一、启动文件配置 二、GPIO使用 2.1基本步骤 1.配置GPIO,所以RCC开启APB2时钟 2.GPIO初始化(结构体) 3.给GPIO引脚设置高/低电平(WriteBit) 2.2Led循环点亮(GPIO输出) 1.RCC开启APB2时钟。…...

各省份消费差距(城乡差距)数据(2005-2022年)
消费差距,特别是城乡消费差距,是衡量一个国家或地区经济发展均衡性的重要指标。 2005年-2022年各省份消费差距(城乡差距)数据(大数据).zip资源-CSDN文库https://download.csdn.net/download/2401_84585615/…...

[Linux] 进程创建、退出和等待
标题:[Linux] 进程创建、退出和等待 个人主页水墨不写bug (图片来源于AI) 目录 一、进程创建fork() 1) fork的返回值: 2)写时拷贝 编辑3)fork常规用法 4ÿ…...

微软推出针对个人的 “AI伴侣” Copilot 会根据用户的行为模式、习惯自动进化
微软推出了为每个人提供的“AI伴侣”Copilot,它不仅能够理解用户的需求,还能根据用户的日常习惯和偏好进行适应和进化。帮助处理各种任务和复杂的日常生活场景。 它能够根据用户的生活背景提供帮助和建议,保护用户的隐私和数据安全。Copilot…...

【QT】QT入门
个人主页~ QT入门 一、简述QT1、什么是QT2、QT的优势3、应用场景 二、QT的基本使用1、新建项目(1)选择项目模版(2)选择项目路径(3)选择构建系统(4)填写类信息设置界面(5&…...

Linux 6.11版本发布
Linux 6.11版本的发布是Linux社区的一个重要里程碑,它不仅在实时计算、性能优化方面取得了显著进展,还在安全性上迈出了关键一步。 一、实时计算与性能优化 1.io_uring子系统支持 Linux 6.11引入了io_uring子系统的增强功能,特别是支持了b…...

CSS 参考手册
CSS 参考手册 概述 CSS(层叠样式表)是一种用于描述HTML或XML文档样式的样式表语言。它用于控制网页的布局和外观,使网页设计更加美观和响应式。CSS可以定义文本颜色、字体、布局、响应式设计等,是网页设计和开发中不可或缺的一部分。 基础语法 CSS的基本语法由选择器和…...

数据采集工具sqoop介绍
文章目录 什么是sqoop?一、Sqoop的起源与发展二、Sqoop的主要功能三、Sqoop的工作原理四、Sqoop的使用场景五、Sqoop的优势六、Sqoop的安装与配置 sqoop命令行一、Sqoop简介与架构二、Sqoop特点三、Sqoop常用命令及参数四、使用示例五、注意事项 什么是sqoop? Sqoop是一款开…...

扫盲:写给UI设计师的SCADA系统知识点
一、SCADA是什么,及其组成。 SCADA(Supervisory Control And Data Acquisition,监控与数据采集系统)是一种用于实时监控、控制和数据采集的自动化系统。 SCADA的组成部分: - 人机界面(HMI*:提…...

类的特殊成员函数——三之法则、五之法则、零之法则
系统中的动态资源、文件句柄(socket描述符、文件描述符)是有限的,在类中若涉及对此类资源的操作,但是未做到妥善的管理,常会造成资源泄露问题,严重的可能造成资源不可用。或引发未定义行为,进而…...

计算机毕业设计 智慧物业服务系统的设计与实现 Java实战项目 附源码+文档+视频讲解
博主介绍:✌从事软件开发10年之余,专注于Java技术领域、Python人工智能及数据挖掘、小程序项目开发和Android项目开发等。CSDN、掘金、华为云、InfoQ、阿里云等平台优质作者✌ 🍅文末获取源码联系🍅 👇🏻 精…...

Python软体中使用SpaCy进行命名实体识别
Python软体中使用SpaCy进行命名实体识别 命名实体识别(Named Entity Recognition,NER)是自然语言处理(NLP)中的一个重要任务,它涉及识别文本中的命名实体,例如人名、地名、组织名等。SpaCy是一种流行的NLP库,提供了高效的NER功能。在本文中,我们将介绍如何使用SpaCy进…...

华为云技术深度解析:以系统性创新加速智能化升级
华为云技术深度解析:以系统性创新加速智能化升级 在当今数字化转型的浪潮中,云计算作为关键的基础设施,正以前所未有的速度推动着各行各业的智能化升级。作为全球领先的云服务提供商,华为云凭借其深厚的技术积累和创新实力&#…...

推理攻击-Python案例
1、本文通过推理攻击的方式来估计训练集中每个类别的样本数量、某样本是否在训练集中。 2、一种简单的实现方法:用模型对训练数据标签进行拟合,拟合结果即推理为训练集中的情况。 3、了解这些案例可以帮助我们更好的保护数据隐私。 推理攻击(…...

find_box_3d
参数 (ObjectModel3DScene, SideLen1, SideLen2, SideLen3, MinScore, GenParam : GrippingPose, Score, ObjectModel3DBox, BoxInformation) 入参介绍 1,ObjectModel3DScene, 输入的3d模型,这个模型最好是由xyx三通道点…...

Visual Studio2017编译GDAL3.0.2源码过程
一、编译环境 操作系统:Windows 10企业版 编译工具:Visual Studio 2017旗舰版 源码版本:gdal3.0.2 二、生成解决方案 打开Visual Studio 2017的x64本机生成工具,切换到gdal3.0.2源码根目录;执行generate_vcxproj.b…...

计算机网络——email
pop3拉出来 超出ASCII码范围就不让传了 这样就可以传更大的文件...

【Linux】信号知识三把斧——信号的产生、保存和处理
目录 1、关于信号的前置知识 1.1.什么是信号? 1.2.为什么要学习信号? 1.3.如何学习信号? 1.4.一些常见的信号 1.5.信号的处理方式 1.6.为什么每一个进程都可以系统调用? 2.信号的产生 2.1.kill命令产生信号…...

【国庆要来了】基于Leaflet的旅游路线WebGIS可视化实践
前言 转眼2024年的国庆节马上就要来临了,估计很多小伙伴都计划好了旅游路线。金秋十月,不管是选择出门去看看风景,还是选择在家里看人。从自己生活惯了的城市去别人生活惯了的城市,去感受城市烟火、去感受人文风景,为2…...

Element-UI Plus 暗黑主题切换及自定义主题色
1. 暗黑主题切换 在main.js中引入下面文件 import element-plus/theme-chalk/dark/css-vars.css安装 vueuse/core pnpm add vueuse/coreApp.vue 添加下面代码 使用了 useDark() 的页面才会从 localStorage中读取当前主题状态,否则,刷新页面就会恢复默…...

人工智能与机器学习原理精解【31】
文章目录 卷积神经网络CNN定义数学原理与公式计算与定理架构例子例题 全连接层的前馈计算定义数学原理与公式计算过程示例 参考文献 卷积神经网络 CNN 即卷积神经网络(Convolutional Neural Networks),是一类包含卷积计算且具有深度结构的前…...

如何安全地大规模部署 GenAI 应用程序
大型语言模型和其他形式的生成式人工智能(GenAI) 的广泛使用带来了许多组织可能没有意识到的安全风险。幸运的是,网络和安全提供商正在寻找方法来应对这些前所未有的威胁。 随着人工智能越来越深入地融入日常业务流程,它面临着泄露专有信息、提供错误答…...

verilog实现FIR滤波系数生成(阶数,FIR滤波器类型及窗函数可调)
在以往采用 FPGA 实现的 FIR 滤波功能,滤波器系数是通过 matlab 计算生成,然后作为固定参数导入到 verilog 程序中,这尽管简单,但灵活性不足。在某些需求下(例如捕获任意给定台站信号)需要随时修改滤波器的…...

OSPF的不规则区域
1.远离骨干非骨干区域 2.不连续骨干 解决方案 tunnel ---点到点GRE 在合法与非ABR间建立隧道,然后将其宣告于OSPF协议中; 缺点:1、周期和触发信息对中间穿越区域造成资源占用(当同一条路由来自不同区域,路由器会先…...

大数据新视界 --大数据大厂之 Ibis:独特架构赋能大数据分析高级抽象层
💖💖💖亲爱的朋友们,热烈欢迎你们来到 青云交的博客!能与你们在此邂逅,我满心欢喜,深感无比荣幸。在这个瞬息万变的时代,我们每个人都在苦苦追寻一处能让心灵安然栖息的港湾。而 我的…...

总结TypeScript相关知识
目录 引入认识特点安装使用变量声明类型推导 JS 和 TS 共有类型number类型boolean类型string类型Array类型null和undefined类型object类型symbol类型对象类型函数类型 可选和只读type 和 interface索引签名类型断言非空类型断言类型缩小严格赋值检测现象TS 新增类型字面量类型a…...

pdf怎么编辑修改内容?详细介绍6款pdf编辑器功能
■ pdf怎么编辑修改内容? PDF(Portable Document Format)作为一种广泛使用的文件格式,具有特点包括兼容性强、易于传输、文件安全性高、跨平台性、可读性强、完整性、可搜索性、安全性、可压缩性。 PDF文件本身是不可以直接进行编…...

【Blender Python】4.获取场景对象的几种方式
概述 有时候我们需要获取场景中已经添加或存在的对象。本节就总结在Blender Python中获取场景中对象的一些方法。 通过名称获取 py.data的objects()方法返回一个对象集合,可以使用键名或者下标形式获取具体的对象。 在默认新建的场景中,存在三个对象…...