当前位置: 首页 > news >正文

基于pytorch的手写数字识别-训练+使用

import pandas as pd
import numpy as np
import torch
import matplotlib
import matplotlib.pyplot as plt
from torch.utils.data import TensorDataset, DataLoadermatplotlib.use('tkAgg')# 设置图形配置
config = {"font.family": 'serif',"mathtext.fontset": 'stix',"font.serif": ['SimSun'],'axes.unicode_minus': False
}
matplotlib.rcParams.update(config)def mymap(labels):return np.where(labels < 10, labels, 0)# 数据加载
path = "d:\\JD\\Documents\\大学等等等\\自学部分\\机器学习自学画图\\手写数字识别\\ex3data1.xlsx"
data = pd.read_excel(path)
data = np.array(data, dtype=np.float32)
x = data[:, :-1]
labels = data[:, -1]
labels = mymap(labels)# 转换为Tensor
x = torch.tensor(x, dtype=torch.float32)
labels = torch.tensor(labels, dtype=torch.long)# 创建Dataset和Dataloader
dataset = TensorDataset(x, labels)
train_loader = DataLoader(dataset, batch_size=20, shuffle=True)# 检查GPU是否可用
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")# 定义模型
my_nn = torch.nn.Sequential(torch.nn.Linear(400, 128),torch.nn.Sigmoid(),torch.nn.Linear(128, 256),torch.nn.Sigmoid(),torch.nn.Linear(256, 512),torch.nn.Sigmoid(),torch.nn.Linear(512, 10)
).to(device)# 加载预训练模型
my_nn.load_state_dict(torch.load('model.pth'))
my_nn.eval()  # 切换至评估模式# 准备选取数据进行预测
sample_indices = np.random.choice(len(dataset), 50, replace=False)  # 随机选择50个样本
sample_images = x[sample_indices].to(device)  # 选择样本并移动到GPU
sample_labels = labels[sample_indices].numpy()  # 真实标签# 进行预测
with torch.no_grad():  # 禁用梯度计算predictions = my_nn(sample_images)predicted_labels = torch.argmax(predictions, dim=1).cpu().numpy()  # 获取预测的标签# 绘制图像
plt.figure(figsize=(10, 10))
for i in range(50):plt.subplot(10, 5, i + 1)  # 10行5列的子图plt.imshow(sample_images[i].cpu().reshape(20, 20), cmap='gray')  # 还原为20x20图像plt.title(f'Predicted: {predicted_labels[i]}', fontsize=8)plt.axis('off')  # 关闭坐标轴plt.tight_layout()  # 调整子图间距
plt.show()

Iteration 0, Loss: 0.8472495079040527
Iteration 20, Loss: 0.014742681756615639
Iteration 40, Loss: 0.00011596851982176304
Iteration 60, Loss: 9.278443030780181e-05
Iteration 80, Loss: 1.3701709576707799e-05
Iteration 100, Loss: 5.019319928578625e-07
Iteration 120, Loss: 0.0
Iteration 140, Loss: 0.0
Iteration 160, Loss: 1.2548344585638915e-08
Iteration 180, Loss: 1.700657230685465e-05
预测准确率: 100.00%

下面使用已经训练好的模型,进行再次测试:

import pandas as pd
import numpy as np
import torch
import matplotlib
import matplotlib.pyplot as plt
from torch.utils.data import TensorDataset, DataLoadermatplotlib.use('tkAgg')# 设置图形配置
config = {"font.family": 'serif',"mathtext.fontset": 'stix',"font.serif": ['SimSun'],'axes.unicode_minus': False
}
matplotlib.rcParams.update(config)def mymap(labels):return np.where(labels < 10, labels, 0)# 数据加载
path = "d:\\JD\\Documents\\大学等等等\\自学部分\\机器学习自学画图\\手写数字识别\\ex3data1.xlsx"
data = pd.read_excel(path)
data = np.array(data, dtype=np.float32)
x = data[:, :-1]
labels = data[:, -1]
labels = mymap(labels)# 转换为Tensor
x = torch.tensor(x, dtype=torch.float32)
labels = torch.tensor(labels, dtype=torch.long)# 创建Dataset和Dataloader
dataset = TensorDataset(x, labels)
train_loader = DataLoader(dataset, batch_size=20, shuffle=True)# 检查GPU是否可用
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")# 定义模型
my_nn = torch.nn.Sequential(torch.nn.Linear(400, 128),torch.nn.Sigmoid(),torch.nn.Linear(128, 256),torch.nn.Sigmoid(),torch.nn.Linear(256, 512),torch.nn.Sigmoid(),torch.nn.Linear(512, 10)
).to(device)# 加载预训练模型
my_nn.load_state_dict(torch.load('model.pth'))
my_nn.eval()  # 切换至评估模式# 准备选取数据进行预测
sample_indices = np.random.choice(len(dataset), 50, replace=False)  # 随机选择50个样本
sample_images = x[sample_indices].to(device)  # 选择样本并移动到GPU
sample_labels = labels[sample_indices].numpy()  # 真实标签# 进行预测
with torch.no_grad():  # 禁用梯度计算predictions = my_nn(sample_images)predicted_labels = torch.argmax(predictions, dim=1).cpu().numpy()  # 获取预测的标签plt.figure(figsize=(16, 10))
for i in range(20):plt.subplot(4, 5, i + 1)  # 4行5列的子图plt.imshow(sample_images[i].cpu().reshape(20, 20), cmap='gray')  # 还原为20x20图像plt.title(f'True: {sample_labels[i]}, Pred: {predicted_labels[i]}', fontsize=12)  # 标题中显示真实值和预测值plt.axis('off')  # 关闭坐标轴plt.tight_layout()  # 调整子图间距
plt.show()

相关文章:

基于pytorch的手写数字识别-训练+使用

import pandas as pd import numpy as np import torch import matplotlib import matplotlib.pyplot as plt from torch.utils.data import TensorDataset, DataLoadermatplotlib.use(tkAgg)# 设置图形配置 config {"font.family": serif,"mathtext.fontset&q…...

SpringBoot接收前端传递参数

1&#xff09;URL 参数 参数直接 拼接在URL的后面&#xff0c;使用 ? 进行分隔&#xff0c;多个参数之间用 & 符号分隔。例如&#xff1a;http://localhost:8080/user?namezhangsan&id1后端接收&#xff08;在Controller方法的参数列表中使用 RequestParam 注解&…...

【LeetCode周赛】第 418 场

3309. 连接二进制表示可形成的最大数值 给你一个长度为 3 的整数数组 nums。 现以某种顺序 连接 数组 nums 中所有元素的 二进制表示 &#xff0c;请你返回可以由这种方法形成的 最大 数值。 注意 任何数字的二进制表示 不含 前导零 思路&#xff1a;暴力枚举 class Soluti…...

Android学习7 -- NDK2 -- 几个例子

学习 Android 的 NDK&#xff08;Native Development Kit&#xff09;可以帮助你用 C/C 来开发高性能的 Android 应用&#xff0c;特别适合对性能要求较高的任务&#xff0c;如音视频处理、游戏开发和硬件驱动等。下面是学习 NDK 的建议步骤和具体例子&#xff1a; ### 1. **准…...

问:说说JVM不同版本的变化和差异?

在Java程序的执行过程中&#xff0c;Java虚拟机&#xff08;JVM&#xff09;扮演着至关重要的角色。它不仅负责解释和执行Java字节码&#xff0c;还管理着程序运行时的内存。根据JVM规范&#xff0c;JVM将其所管理的内存划分为多个不同的数据区域&#xff0c;包括程序计数器、J…...

计算机毕业设计 基于Python的社交音乐分享平台的设计与实现 Python+Django+Vue 前后端分离 附源码 讲解 文档

&#x1f34a;作者&#xff1a;计算机编程-吉哥 &#x1f34a;简介&#xff1a;专业从事JavaWeb程序开发&#xff0c;微信小程序开发&#xff0c;定制化项目、 源码、代码讲解、文档撰写、ppt制作。做自己喜欢的事&#xff0c;生活就是快乐的。 &#x1f34a;心愿&#xff1a;点…...

51单片机的水位检测系统【proteus仿真+程序+报告+原理图+演示视频】

1、主要功能 该系统由AT89C51/STC89C52单片机LCD1602显示模块水位传感器继电器LED、按键和蜂鸣器等模块构成。适用于水位监测、水位控制、水位检测相似项目。 可实现功能: 1、LCD1602实时显示水位高度 2、水位传感器采集水位高度 3、按键可设置水位的下限 4、按键可手动加…...

Python和R及Julia妊娠相关疾病生物剖析算法

&#x1f3af;要点 算法使用了矢量投影、现代优化线性代数、空间分区技术和大数据编程利用相应向量空间中标量积和欧几里得距离的紧密关系来计算使用妊娠相关疾病&#xff08;先兆子痫&#xff09;、健康妊娠和癌症测试算法模型使用相关性投影利用相关性和欧几里得距离之间的关…...

Web安全 - 重放攻击(Replay Attack)

文章目录 OWASP 2023 TOP 10导图1. 概述2. 重放攻击的原理攻击步骤 3. 常见的重放攻击场景4. 防御重放攻击的技术措施4.1 使用时效性验证&#xff08;Time-Based Tokens&#xff09;4.2 单次令牌机制&#xff08;Nonce&#xff09;4.3 TLS/SSL 协议4.4 HMAC&#xff08;哈希消息…...

Python项目文档生成常用工具对比

写在前面&#xff1a; 通过阅读本片文章&#xff0c;你将了解&#xff1a;主流的Python项目文档生成工具&#xff08;Sphinx&#xff0c;MkDocs&#xff0c;pydoc&#xff0c;Pdoc&#xff09;简介及对比&#xff0c;本文档不涉及相关工具的使用。 概述 近期&#xff0c;由于…...

教育领域的技术突破:SpringBoot系统实现

2相关技术 2.1 MYSQL数据库 MySQL是一个真正的多用户、多线程SQL数据库服务器。 是基于SQL的客户/服务器模式的关系数据库管理系统&#xff0c;它的有点有有功能强大、使用简单、管理方便、安全可靠性高、运行速度快、多线程、跨平台性、完全网络化、稳定性等&#xff0c;非常…...

RabbitMQ入门3—virtual host参数详解

在 RabbitMQ 中&#xff0c;创建 Virtual Host 时会涉及到一些参数配置&#xff0c;比如 tags 和 Default Queue Type。下面是对这两个参数的详细解释&#xff1a; 1. Tags Tags 是 Virtual Host 的标记&#xff0c;用来为 Virtual Host 添加元数据&#xff0c;帮助你管理和组…...

【Nacos入门到实战十四】Nacos配置管理:集群部署与高可用策略

个人名片 &#x1f393;作者简介&#xff1a;java领域优质创作者 &#x1f310;个人主页&#xff1a;码农阿豪 &#x1f4de;工作室&#xff1a;新空间代码工作室&#xff08;提供各种软件服务&#xff09; &#x1f48c;个人邮箱&#xff1a;[2435024119qq.com] &#x1f4f1…...

UE5+ChatGPT实现3D AI虚拟人综合实战

第11章 综合实战&#xff1a;UE5ChatGPT实现3D AI虚拟人 通过结合Unreal Engine 5&#xff08;UE5&#xff09;的强大渲染能力和ChatGPT的自然语言处理能力&#xff0c;我们可以实现一个高度交互性的AI虚拟人。本文将详细介绍如何在UE5中安装必要的插件&#xff0c;配置OpenAI…...

[图形学]smallpt代码详解(2)

一、简介 本文紧接在[图形学]smallpt代码详解&#xff08;1&#xff09;之后&#xff0c;继续详细讲解smallpt中的代码&#xff0c;包括自定义函数&#xff08;第41到47行&#xff09;和递归路径跟踪函数&#xff08;第48到74行&#xff09;部分。 二、smallpt代码详解 1.自…...

vmstat命令:系统性能监控

一、命令简介 ​vmstat​ 是一种在类 Unix 系统上常用的性能监控工具&#xff0c;它可以报告虚拟内存统计信息&#xff0c;包括进程、内存、分页、块 IO、陷阱&#xff08;中断&#xff09;和 CPU 活动等。 ‍ 二、命令参数 2.1 命令格式 vmstat [选项] [ 延迟 [次数] ]2…...

linux部署NFS和autofs自动挂载

目录 &#xff08;一&#xff09;NFS&#xff1a; 1. 什么是NFS 2. NFS守护进程 3. RPC服务 4. 原理 5. 部署 5.1 安装NFS服务 5.2 配置防火墙 5.3 创建服务端共享目录 5.4 修改服务端配置文件 (1). /etc/exports (2). nfs.conf 5.5 启动nfs并加入自启 5.6 客户端…...

WPF RadioButton 绑定boolean值

<RadioButtonMargin"5"Content"替换"IsChecked"{Binding CorrectionOption.ReCorrectionMode}" /> <RadioButtonMargin"5"Content"平均"IsChecked"{Binding CorrectionOption.ReCorrectionMode, Converter{St…...

2024 ciscn WP

一、MISC 1.火锅链观光打卡 打开后连接自己的钱包&#xff0c;然后点击开始游戏&#xff0c;答题八次后点击获取NFT&#xff0c;得到有flag的图片 没什么多说的&#xff0c;知识问答题 兑换 NFT Flag{y0u_ar3_hotpot_K1ng} 2.Power Trajectory Diagram 方法1&#xff1a; 使用p…...

代码随想录--字符串--重复的子字符串

题目 给定一个非空的字符串&#xff0c;判断它是否可以由它的一个子串重复多次构成。给定的字符串只含有小写英文字母&#xff0c;并且长度不超过10000。 示例 1: 输入: "abab" 输出: True 解释: 可由子字符串 "ab" 重复两次构成。示例 2: 输入: "…...

【大模型RAG】拍照搜题技术架构速览:三层管道、两级检索、兜底大模型

摘要 拍照搜题系统采用“三层管道&#xff08;多模态 OCR → 语义检索 → 答案渲染&#xff09;、两级检索&#xff08;倒排 BM25 向量 HNSW&#xff09;并以大语言模型兜底”的整体框架&#xff1a; 多模态 OCR 层 将题目图片经过超分、去噪、倾斜校正后&#xff0c;分别用…...

RocketMQ延迟消息机制

两种延迟消息 RocketMQ中提供了两种延迟消息机制 指定固定的延迟级别 通过在Message中设定一个MessageDelayLevel参数&#xff0c;对应18个预设的延迟级别指定时间点的延迟级别 通过在Message中设定一个DeliverTimeMS指定一个Long类型表示的具体时间点。到了时间点后&#xf…...

练习(含atoi的模拟实现,自定义类型等练习)

一、结构体大小的计算及位段 &#xff08;结构体大小计算及位段 详解请看&#xff1a;自定义类型&#xff1a;结构体进阶-CSDN博客&#xff09; 1.在32位系统环境&#xff0c;编译选项为4字节对齐&#xff0c;那么sizeof(A)和sizeof(B)是多少&#xff1f; #pragma pack(4)st…...

解锁数据库简洁之道:FastAPI与SQLModel实战指南

在构建现代Web应用程序时&#xff0c;与数据库的交互无疑是核心环节。虽然传统的数据库操作方式&#xff08;如直接编写SQL语句与psycopg2交互&#xff09;赋予了我们精细的控制权&#xff0c;但在面对日益复杂的业务逻辑和快速迭代的需求时&#xff0c;这种方式的开发效率和可…...

精益数据分析(97/126):邮件营销与用户参与度的关键指标优化指南

精益数据分析&#xff08;97/126&#xff09;&#xff1a;邮件营销与用户参与度的关键指标优化指南 在数字化营销时代&#xff0c;邮件列表效度、用户参与度和网站性能等指标往往决定着创业公司的增长成败。今天&#xff0c;我们将深入解析邮件打开率、网站可用性、页面参与时…...

安宝特案例丨Vuzix AR智能眼镜集成专业软件,助力卢森堡医院药房转型,赢得辉瑞创新奖

在Vuzix M400 AR智能眼镜的助力下&#xff0c;卢森堡罗伯特舒曼医院&#xff08;the Robert Schuman Hospitals, HRS&#xff09;凭借在无菌制剂生产流程中引入增强现实技术&#xff08;AR&#xff09;创新项目&#xff0c;荣获了2024年6月7日由卢森堡医院药剂师协会&#xff0…...

【VLNs篇】07:NavRL—在动态环境中学习安全飞行

项目内容论文标题NavRL: 在动态环境中学习安全飞行 (NavRL: Learning Safe Flight in Dynamic Environments)核心问题解决无人机在包含静态和动态障碍物的复杂环境中进行安全、高效自主导航的挑战&#xff0c;克服传统方法和现有强化学习方法的局限性。核心算法基于近端策略优化…...

人工智能(大型语言模型 LLMs)对不同学科的影响以及由此产生的新学习方式

今天是关于AI如何在教学中增强学生的学习体验&#xff0c;我把重要信息标红了。人文学科的价值被低估了 ⬇️ 转型与必要性 人工智能正在深刻地改变教育&#xff0c;这并非炒作&#xff0c;而是已经发生的巨大变革。教育机构和教育者不能忽视它&#xff0c;试图简单地禁止学生使…...

python爬虫——气象数据爬取

一、导入库与全局配置 python 运行 import json import datetime import time import requests from sqlalchemy import create_engine import csv import pandas as pd作用&#xff1a; 引入数据解析、网络请求、时间处理、数据库操作等所需库。requests&#xff1a;发送 …...

WPF八大法则:告别模态窗口卡顿

⚙️ 核心问题&#xff1a;阻塞式模态窗口的缺陷 原始代码中ShowDialog()会阻塞UI线程&#xff0c;导致后续逻辑无法执行&#xff1a; var result modalWindow.ShowDialog(); // 线程阻塞 ProcessResult(result); // 必须等待窗口关闭根本问题&#xff1a…...