G2O 通过工厂函数类 OptimizationAlgorithmFactory 来生成固定搭配的优化算法
OptimizationAlgorithmFactory 类位于 optimization_algorithm_factory.h
//***g2o源码 g2o/g2o/core/optimization_algorithm_factory.h ***//
/*** \brief create solvers based on their short name** Factory to allocate solvers based on their short name.* The Factory is implemented as a sigleton and the single* instance can be accessed via the instance() function.*/
/*** \brief 工厂类用于根据优化算法的名称创建不同的优化算法(OptimizationAlgorithm)** 工厂类是单例模式(singleton)的实现,可以通过instance()方法获取唯一的实例,* 并通过destroy()方法释放实例。*/class G2O_CORE_API OptimizationAlgorithmFactory{public:typedef std::list<AbstractOptimizationAlgorithmCreator*> CreatorList;//! return the instance//! 获取工厂类的唯一实例static OptimizationAlgorithmFactory* instance();//! free the instance//! 释放唯一实例static void destroy();/*** register a specific creator for allocating a solver* 注册特定的创建者 creator 以分配求解器 solver*/void registerSolver(AbstractOptimizationAlgorithmCreator* c);/*** unregister a specific creator for allocating a solver*/void unregisterSolver(AbstractOptimizationAlgorithmCreator* c);/*** construct a solver based on its name, e.g., var, fix3_2_cholmod* 根据名称 tag 来创建求解器 solver*/OptimizationAlgorithm* construct(const std::string& tag, OptimizationAlgorithmProperty& solverProperty) const;//! list the known solvers into a stream//! 将已知的求解器 solver 列到流中void listSolvers(std::ostream& os) const;//! return the underlying list of creators//! 返回创建者 creators 的基本列表const CreatorList& creatorList() const { return _creator;}protected:OptimizationAlgorithmFactory();~OptimizationAlgorithmFactory();CreatorList _creator;CreatorList::const_iterator findSolver(const std::string& name) const;CreatorList::iterator findSolver(const std::string& name);private:static OptimizationAlgorithmFactory* factoryInstance;};
示例代码:
// 这里使用一个工厂函数同时初始化迭代方式和线性求解方式,后续可以将迭代方式(总求解器 solver)和线性求解方式(线性求解器 LinearSolver)分开// 创建一个指向g2o::OptimizationAlgorithmFactory的实例指针g2o::OptimizationAlgorithmFactory *solver_factory = g2o::OptimizationAlgorithmFactory::instance();// 定义一个 g2o::OptimizationAlgorithmProperty 类型的对象用于存储与优化算法相关的元信息g2o::OptimizationAlgorithmProperty solver_property;// 根据名称 tag 创建求解器 solver,调用 construct() 时,函数会将所构建的求解器相关的元信息存储到这个对象中,// 比如该求解器的名称、是否需要舒尔补、位姿自由度、地图路标自由度等。g2o::OptimizationAlgorithm *solver = solver_factory->construct("lm_var", solver_property);std::unique_ptr<g2o::SparseOptimizer> graph_ptr_;graph_ptr_.reset(new g2o::SparseOptimizer());graph_ptr_->setAlgorithm(solver);if (!graph_ptr_->solver()) {LOG(ERROR) << "G2O 优化器创建失败!";}// 初始化鲁棒核函数的工厂函数g2o::RobustKernelFactory *robust_kernel_factory_ = g2o::RobustKernelFactory::instance();
其中,OptimizationAlgorithm* construct(const std::string& tag, OptimizationAlgorithmProperty& solverProperty) const; 函数中 tag 的所有可用算法与其对应描述有:
//*** g2o源码 g2o/g2o/solvers/cholmod/solver_cholmod.cpp ***//
G2O_REGISTER_OPTIMIZATION_LIBRARY(cholmod);G2O_REGISTER_OPTIMIZATION_ALGORITHM(gn_var_cholmod,new CholmodSolverCreator(OptimizationAlgorithmProperty("gn_var_cholmod","Gauss-Newton: Cholesky solver using CHOLMOD (variable blocksize)","CHOLMOD", false, Eigen::Dynamic, Eigen::Dynamic)));
G2O_REGISTER_OPTIMIZATION_ALGORITHM(gn_fix3_2_cholmod,new CholmodSolverCreator(OptimizationAlgorithmProperty("gn_fix3_2_cholmod","Gauss-Newton: Cholesky solver using CHOLMOD (fixed blocksize)","CHOLMOD", true, 3, 2)));
G2O_REGISTER_OPTIMIZATION_ALGORITHM(gn_fix6_3_cholmod,new CholmodSolverCreator(OptimizationAlgorithmProperty("gn_fix6_3_cholmod","Gauss-Newton: Cholesky solver using CHOLMOD (fixed blocksize)","CHOLMOD", true, 6, 3)));
G2O_REGISTER_OPTIMIZATION_ALGORITHM(gn_fix7_3_cholmod,new CholmodSolverCreator(OptimizationAlgorithmProperty("gn_fix7_3_cholmod","Gauss-Newton: Cholesky solver using CHOLMOD (fixed blocksize)","CHOLMOD", true, 7, 3)));
G2O_REGISTER_OPTIMIZATION_ALGORITHM(lm_var_cholmod,new CholmodSolverCreator(OptimizationAlgorithmProperty("lm_var_cholmod","Levenberg: Cholesky solver using CHOLMOD (variable blocksize)","CHOLMOD", false, Eigen::Dynamic, Eigen::Dynamic)));
G2O_REGISTER_OPTIMIZATION_ALGORITHM(lm_fix3_2_cholmod,new CholmodSolverCreator(OptimizationAlgorithmProperty("lm_fix3_2_cholmod","Levenberg: Cholesky solver using CHOLMOD (fixed blocksize)", "CHOLMOD",true, 3, 2)));
G2O_REGISTER_OPTIMIZATION_ALGORITHM(lm_fix6_3_cholmod,new CholmodSolverCreator(OptimizationAlgorithmProperty("lm_fix6_3_cholmod","Levenberg: Cholesky solver using CHOLMOD (fixed blocksize)", "CHOLMOD",true, 6, 3)));
G2O_REGISTER_OPTIMIZATION_ALGORITHM(lm_fix7_3_cholmod,new CholmodSolverCreator(OptimizationAlgorithmProperty("lm_fix7_3_cholmod","Levenberg: Cholesky solver using CHOLMOD (fixed blocksize)", "CHOLMOD",true, 7, 3)));
G2O_REGISTER_OPTIMIZATION_ALGORITHM(dl_var_cholmod,new CholmodSolverCreator(OptimizationAlgorithmProperty("dl_var_cholmod","Dogleg: Cholesky solver using CHOLMOD (variable blocksize)", "CHOLMOD",false, Eigen::Dynamic, Eigen::Dynamic)));
//*** g2o源码 g2o/g2o/solvers/csparse/solver_csparse.cpp ***//G2O_REGISTER_OPTIMIZATION_LIBRARY(csparse);G2O_REGISTER_OPTIMIZATION_ALGORITHM(gn_var_csparse, new CSparseSolverCreator(OptimizationAlgorithmProperty("gn_var_csparse", "Gauss-Newton: Cholesky solver using CSparse (variable blocksize)", "CSparse", false, Eigen::Dynamic, Eigen::Dynamic)));G2O_REGISTER_OPTIMIZATION_ALGORITHM(gn_fix3_2_csparse, new CSparseSolverCreator(OptimizationAlgorithmProperty("gn_fix3_2_csparse", "Gauss-Newton: Cholesky solver using CSparse (fixed blocksize)", "CSparse", true, 3, 2)));G2O_REGISTER_OPTIMIZATION_ALGORITHM(gn_fix6_3_csparse, new CSparseSolverCreator(OptimizationAlgorithmProperty("gn_fix6_3_csparse", "Gauss-Newton: Cholesky solver using CSparse (fixed blocksize)", "CSparse", true, 6, 3)));G2O_REGISTER_OPTIMIZATION_ALGORITHM(gn_fix7_3_csparse, new CSparseSolverCreator(OptimizationAlgorithmProperty("gn_fix7_3_csparse", "Gauss-Newton: Cholesky solver using CSparse (fixed blocksize)", "CSparse", true, 7, 3)));G2O_REGISTER_OPTIMIZATION_ALGORITHM(lm_var_csparse, new CSparseSolverCreator(OptimizationAlgorithmProperty("lm_var_csparse", "Levenberg: Cholesky solver using CSparse (variable blocksize)", "CSparse", false, Eigen::Dynamic, Eigen::Dynamic)));G2O_REGISTER_OPTIMIZATION_ALGORITHM(lm_fix3_2_csparse, new CSparseSolverCreator(OptimizationAlgorithmProperty("lm_fix3_2_csparse", "Levenberg: Cholesky solver using CSparse (fixed blocksize)", "CSparse", true, 3, 2)));G2O_REGISTER_OPTIMIZATION_ALGORITHM(lm_fix6_3_csparse, new CSparseSolverCreator(OptimizationAlgorithmProperty("lm_fix6_3_csparse", "Levenberg: Cholesky solver using CSparse (fixed blocksize)", "CSparse", true, 6, 3)));G2O_REGISTER_OPTIMIZATION_ALGORITHM(lm_fix7_3_csparse, new CSparseSolverCreator(OptimizationAlgorithmProperty("lm_fix7_3_csparse", "Levenberg: Cholesky solver using CSparse (fixed blocksize)", "CSparse", true, 7, 3)));G2O_REGISTER_OPTIMIZATION_ALGORITHM(dl_var_csparse, new CSparseSolverCreator(OptimizationAlgorithmProperty("dl_var_csparse", "Dogleg: Cholesky solver using CSparse (variable blocksize)", "CSparse", false, Eigen::Dynamic, Eigen::Dynamic)));
//*** g2o源码 g2o/g2o/solvers/eigen/solver_eigen.cpp ***//G2O_REGISTER_OPTIMIZATION_LIBRARY(eigen);G2O_REGISTER_OPTIMIZATION_ALGORITHM(gn_var, new EigenSolverCreator(OptimizationAlgorithmProperty("gn_var", "Gauss-Newton: Cholesky solver using Eigen's Sparse Cholesky methods (variable blocksize)", "Eigen", false, Eigen::Dynamic, Eigen::Dynamic)));G2O_REGISTER_OPTIMIZATION_ALGORITHM(gn_fix3_2, new EigenSolverCreator(OptimizationAlgorithmProperty("gn_fix3_2", "Gauss-Newton: Cholesky solver using Eigen's Sparse Cholesky (fixed blocksize)", "Eigen", true, 3, 2)));G2O_REGISTER_OPTIMIZATION_ALGORITHM(gn_fix6_3, new EigenSolverCreator(OptimizationAlgorithmProperty("gn_fix6_3", "Gauss-Newton: Cholesky solver using Eigen's Sparse Cholesky (fixed blocksize)", "Eigen", true, 6, 3)));G2O_REGISTER_OPTIMIZATION_ALGORITHM(gn_fix7_3, new EigenSolverCreator(OptimizationAlgorithmProperty("gn_fix7_3", "Gauss-Newton: Cholesky solver using Eigen's Sparse Cholesky (fixed blocksize)", "Eigen", true, 7, 3)));G2O_REGISTER_OPTIMIZATION_ALGORITHM(lm_var, new EigenSolverCreator(OptimizationAlgorithmProperty("lm_var", "Levenberg: Cholesky solver using Eigen's Sparse Cholesky methods (variable blocksize)", "Eigen", false, Eigen::Dynamic, Eigen::Dynamic)));G2O_REGISTER_OPTIMIZATION_ALGORITHM(lm_fix3_2, new EigenSolverCreator(OptimizationAlgorithmProperty("lm_fix3_2", "Levenberg: Cholesky solver using Eigen's Sparse Cholesky (fixed blocksize)", "Eigen", true, 3, 2)));G2O_REGISTER_OPTIMIZATION_ALGORITHM(lm_fix6_3, new EigenSolverCreator(OptimizationAlgorithmProperty("lm_fix6_3", "Levenberg: Cholesky solver using Eigen's Sparse Cholesky (fixed blocksize)", "Eigen", true, 6, 3)));G2O_REGISTER_OPTIMIZATION_ALGORITHM(lm_fix7_3, new EigenSolverCreator(OptimizationAlgorithmProperty("lm_fix7_3", "Levenberg: Cholesky solver using Eigen's Sparse Cholesky (fixed blocksize)", "Eigen", true, 7, 3)));G2O_REGISTER_OPTIMIZATION_ALGORITHM(dl_var, new EigenSolverCreator(OptimizationAlgorithmProperty("dl_var", "Dogleg: Cholesky solver using Eigen's Sparse Cholesky methods (variable blocksize)", "Eigen", false, Eigen::Dynamic, Eigen::Dynamic)));
//*** g2o源码 g2o/g2o/solvers/dense/solver_dense.cpp ***//
G2O_REGISTER_OPTIMIZATION_LIBRARY(dense);G2O_REGISTER_OPTIMIZATION_ALGORITHM(gn_dense, new DenseSolverCreator(OptimizationAlgorithmProperty("gn_dense", "Gauss-Newton: Dense solver (variable blocksize)","Dense", false, Eigen::Dynamic, Eigen::Dynamic)));
G2O_REGISTER_OPTIMIZATION_ALGORITHM(gn_dense3_2,new DenseSolverCreator(OptimizationAlgorithmProperty("gn_dense3_2", "Gauss-Newton: Dense solver (fixed blocksize)", "Dense",true, 3, 2)));
G2O_REGISTER_OPTIMIZATION_ALGORITHM(gn_dense6_3,new DenseSolverCreator(OptimizationAlgorithmProperty("gn_dense6_3", "Gauss-Newton: Dense solver (fixed blocksize)", "Dense",true, 6, 3)));
G2O_REGISTER_OPTIMIZATION_ALGORITHM(gn_dense7_3,new DenseSolverCreator(OptimizationAlgorithmProperty("gn_dense7_3", "Gauss-Newton: Dense solver (fixed blocksize)", "Dense",true, 7, 3)));
G2O_REGISTER_OPTIMIZATION_ALGORITHM(lm_dense, new DenseSolverCreator(OptimizationAlgorithmProperty("lm_dense", "Levenberg: Dense solver (variable blocksize)","Dense", false, -1, -1)));
G2O_REGISTER_OPTIMIZATION_ALGORITHM(lm_dense3_2, new DenseSolverCreator(OptimizationAlgorithmProperty("lm_dense3_2", "Levenberg: Dense solver (fixed blocksize)","Dense", true, 3, 2)));
G2O_REGISTER_OPTIMIZATION_ALGORITHM(lm_dense6_3, new DenseSolverCreator(OptimizationAlgorithmProperty("lm_dense6_3", "Levenberg: Dense solver (fixed blocksize)","Dense", true, 6, 3)));
G2O_REGISTER_OPTIMIZATION_ALGORITHM(lm_dense7_3, new DenseSolverCreator(OptimizationAlgorithmProperty("lm_dense7_3", "Levenberg: Dense solver (fixed blocksize)","Dense", true, 7, 3)));
//*** g2o源码 g2o/g2o/solvers/pcg/solver_pcg.cpp ***//
G2O_REGISTER_OPTIMIZATION_LIBRARY(pcg);G2O_REGISTER_OPTIMIZATION_ALGORITHM(gn_pcg, new PCGSolverCreator(OptimizationAlgorithmProperty("gn_pcg","Gauss-Newton: PCG solver using block-Jacobi pre-conditioner ""(variable blocksize)","PCG", false, Eigen::Dynamic, Eigen::Dynamic)));
G2O_REGISTER_OPTIMIZATION_ALGORITHM(gn_pcg3_2, new PCGSolverCreator(OptimizationAlgorithmProperty("gn_pcg3_2","Gauss-Newton: PCG solver using block-Jacobi ""pre-conditioner (fixed blocksize)","PCG", true, 3, 2)));
G2O_REGISTER_OPTIMIZATION_ALGORITHM(gn_pcg6_3, new PCGSolverCreator(OptimizationAlgorithmProperty("gn_pcg6_3","Gauss-Newton: PCG solver using block-Jacobi ""pre-conditioner (fixed blocksize)","PCG", true, 6, 3)));
G2O_REGISTER_OPTIMIZATION_ALGORITHM(gn_pcg7_3, new PCGSolverCreator(OptimizationAlgorithmProperty("gn_pcg7_3","Gauss-Newton: PCG solver using block-Jacobi ""pre-conditioner (fixed blocksize)","PCG", true, 7, 3)));
G2O_REGISTER_OPTIMIZATION_ALGORITHM(lm_pcg, new PCGSolverCreator(OptimizationAlgorithmProperty("lm_pcg","Levenberg: PCG solver using block-Jacobi pre-conditioner ""(variable blocksize)","PCG", false, Eigen::Dynamic, Eigen::Dynamic)));
G2O_REGISTER_OPTIMIZATION_ALGORITHM(lm_pcg3_2, new PCGSolverCreator(OptimizationAlgorithmProperty("lm_pcg3_2","Levenberg: PCG solver using block-Jacobi pre-conditioner ""(fixed blocksize)","PCG", true, 3, 2)));
G2O_REGISTER_OPTIMIZATION_ALGORITHM(lm_pcg6_3, new PCGSolverCreator(OptimizationAlgorithmProperty("lm_pcg6_3","Levenberg: PCG solver using block-Jacobi pre-conditioner ""(fixed blocksize)","PCG", true, 6, 3)));
G2O_REGISTER_OPTIMIZATION_ALGORITHM(lm_pcg7_3, new PCGSolverCreator(OptimizationAlgorithmProperty("lm_pcg7_3","Levenberg: PCG solver using block-Jacobi pre-conditioner ""(fixed blocksize)","PCG", true, 7, 3)));
参考
[代码实践] G2O 学习记录(一):2D 位姿图优化
[代码实践] G2O 学习记录(二):3D 位姿图优化
相关文章:

G2O 通过工厂函数类 OptimizationAlgorithmFactory 来生成固定搭配的优化算法
OptimizationAlgorithmFactory 类位于 optimization_algorithm_factory.h //***g2o源码 g2o/g2o/core/optimization_algorithm_factory.h ***// /*** \brief create solvers based on their short name** Factory to allocate solvers based on their short name.* The Factor…...

手机USB连接不显示内部设备,设备管理器显示“MTP”感叹号,解决方案
进入小米驱动下载界面,等小米驱动下载完成后,解压此驱动文件压缩包。 5、小米USB驱动安装方法:右击“计算机”,从弹出的右键菜单中选择“管理”项进入。 6、在打开的“计算机管理”界面中,展开“设备管理器”项&…...

SpringBootWeb快速入门!详解如何创建一个简单的SpringBoot项目?
在现代Web开发中,SpringBoot以其简化的配置和快速的开发效率而受到广大开发者的青睐。本篇文章将带领你从零开始,搭建一个基于SpringBoot的简单Web应用~ 一、前提准备 想要创建一个SpringBoot项目,需要做如下准备: idea集成开发…...

RabbitMQ 入门到精通指南
RabbitMQ 是一种开源消息代理软件,基于 AMQP(高级消息队列协议)构建,用于异步传输数据,帮助我们解耦系统、削峰流量、处理高并发。本指南将详细介绍 RabbitMQ 的架构设计、使用场景、安装步骤以及一些高级应用…...

ARM base instruction -- movz
Move wide with zero moves an optionally-shifted 16-bit immediate value to a register. 用零移动宽值将可选移位的16位即时值移动到寄存器。即把立即数移动寄存器前先把寄存器清零。 32-bit variant MOVZ <Wd>, #<imm>{, LSL #<shift>} 64-bit var…...

安装jdk安装开发环境与maven
1.下载maven 链接: https://pan.baidu.com/s/1gTmIWBFBdIQob0cqGG3E_Q 提取码: 42ck,apache-maven-3.8.4-bin.zip 2.安装java jdk yum install -y java-1.8.0-openjdk-devel 3.在/opt目录下新建目录 mkdir /opt/maven 4.将apache-maven-3.8.4-bin.zip上传到/opt/ma…...

openpnp - 图像传送方向要在高级校正之前设置好
文章目录 openpnp - 图像传送方向要在高级校正之前设置好笔记图像传送方向的确定END openpnp - 图像传送方向要在高级校正之前设置好 笔记 图像传送方向和JOG面板的移动控制和实际设备的顶部摄像头/底部摄像头要一致,这样才能和贴板子时的实际操作方向对应起来。 …...

数据库建表规范【记录】
建表规约 【强制】创建表时必须显式指定表存储引擎类型,如无特殊需求,一律为InnoDB。 【强制】必须有行数据的创建时间字段create_date和最后更新时间字段edit_date。 【强制】自增主键命名必须是id,关联表外键命名xxyyzz_id;业务…...

css的动画属性
CSS动画属性是CSS3的一个重要特性,它允许你创建平滑的过渡效果,增强用户的交互体验。CSS动画可以通过keyframes规则和animation属性来创建。 animation属性 animation属性是一个简写属性,用于设置动画的多个属性,包括动画名称、…...

【Ubuntu】PlantUML工具 | 安装 | 语法 | 使用工具画序列图
🌱 PlantUML是一个通用性很强的工具,可以快速、直接地创建各种图表。 目录 1 安装 2 使用PlantUML画序列图 ① 语法 ②示例和效果 利用简单直观的语言,用户可以毫不费力地绘制各种类型的图表。PlantUML 是一个开源项目,支持快速绘制:• 时序图• 用例图• 类图• 对...

微信步数C++
题目: 样例解释: 【样例 #1 解释】 从 (1,1) 出发将走 2 步,从 (1,2) 出发将走 4 步,从 (1,3) 出发将走 4 步。 从 (2,1) 出发将走 2 步,从 (2,2) 出发将走 3 步,从 (2,3) 出发将走 3 步。 从 (3,1) 出发将…...

AI写作工具大比拼:揭秘Claude的神秘魅力以及如何订阅Claude
AI写作困境与Claude的惊喜表现 最近有很多朋友在吐槽AI写的文章不太行,我一看他的要求写的很清楚,已经把提示词都用到位了,例如:写作背景、写作要求等,都有具体写出来。但文章阅读起来就是欠缺点啥。 你们有没有遇到…...

秋招内推2025-招联金融
【投递方式】 直接扫下方二维码,或点击内推官网https://wecruit.hotjob.cn/SU61025e262f9d247b98e0a2c2/mc/position/campus,使用内推码 igcefb 投递) 【招聘岗位】 后台开发 前端开发 数据开发 数据运营 算法开发 技术运维 软件测试 产品策…...

GOM引擎启动后M2提示Invalid filename报错的解决办法
在架设一个GOM引擎版本的时候,启动M2就提示Invalid filename,之后的网关就没有办法再启动了,研究了半天也终于是弄好了,其实也简单,就是路径设置的不对,所以无法完成启动,很多人以为在控制台设置…...

CPU 多级缓存
在多线程并发场景下,普通的累加很可能错的 CPU 多级缓存 Main Memory : 主存Cache : 高速缓存,数据的读取存储都经过此高速缓存CPU Core : CPU 核心Bus : 系统总线 CPU Core 和 Cache 通过快速通道连接,Main menory 和 Cache 都挂载到 Bus 上…...

Chrome浏览器调用ActiveX控件--allWebOffice控件功能介绍
allWebOffice控件概述 allWebOffice控件能够实现在浏览器窗口中在线操作文档的应用(阅读、编辑、保存等),支持编辑文档时保留修改痕迹,支持书签位置内容动态填充,支持公文套红,支持文档保护控制等诸多办公功…...

JavaScript-下篇
上篇我们学习了,一些基础语法和函数,现在我们学习下篇,主要包括,对象和事件。而对象又包括,数组Arrays,String字符串,BOM,DOM等 JS对象 Arrays数组 数组是一种特殊的对象,用于存储…...

STM32-HAL库驱动DHT11温湿度传感器 --2024.9.28
目录 一、教程简介 二、驱动原理讲解 (一)通信4步骤 (二)传感器数据解析 三、CubeMX生成底层代码 (一)基础配置 (二)配置DHT11的驱动引脚 (三)配置串口 四…...

使用C语言获取iostat中的await值的方法和方案
使用C语言获取iostat中的await值的方法和方案 1. 准备工作2. 调用iostat命令并获取输出3. 解析iostat输出4. 完整实现和错误处理5. 注意事项在Linux系统中,iostat命令是sysstat软件包的一部分,用于监控系统的CPU、网卡、tty设备、磁盘、CD-ROM等设备的活动情况和负载信息。其…...

阿里云域名解析和备案
文章目录 1、域名解析2、新手引导3、ICP备案 1、域名解析 2、新手引导 3、ICP备案...

gitee公钥设置、创建库及使用
简介 一、如何安装git 使用gitee,需要先安装git工具。 工具网站地址:https://git-scm.com/downloads 安装完成后,在terminal命令行输入git --version可以查看到git的版本。 二、登录gitee 我们先在 gitee上注册账号并登录。gitee官网&#x…...

融媒体服务中PBO进行多重采样抗锯齿(MSAA)
如果不理解pbo 那先去了解概念,在此不再解释,这是我为了做融合服务器viewpointserver做的一部分工作,融合服务器的功能是将三维和流媒体,AI融合在一起,viewpointserver会直接读取三维工程的文件,同时融合rt…...

说说BPMN概念及应用
BPMN(Business Process Modeling and Notation)即业务流程建模与标注,是一种由OMG(Object Management Group,对象管理组织)制定的业务流程建模语言。以下是对BPMN标准的详细解释: 一、BPMN的起…...

【微服务】初识(day1)
基础概念 集群 集群是将一个系统完整的部署到多个服务器,每个服务器提供系统的所有服务,多个服务器可以通过负载均衡完成任务,每个服务器都可以称为集群的节点。 分布式 分布式是将一个系统拆分为多个子系统,多个子系统部署在…...

15分钟学 Python 第40天:Python 爬虫入门(六)第一篇
Day40 :Python 爬取豆瓣网前一百的电影信息 1. 项目背景 在这个项目中,我们将学习如何利用 Python 爬虫技术从豆瓣网抓取前一百部电影的信息。通过这一练习,您将掌握网页抓取的基本流程,包括发送请求、解析HTML、存储数据等核心…...

分层解耦-05.IOCDI-DI详解
一.依赖注入的注解 在我们的项目中,EmpService的实现类有两个,分别是EmpServiceA和EmpServiceB。这两个实现类都加上Service注解。我们运行程序,就会报错。 这是因为我们依赖注入的注解Autowired默认是按照类型来寻找bean对象的进行依赖注入…...

HCIP-HarmonyOS Application Developer 习题(六)
(多选)1、Harmonyos多窗口交互能力提供了以下哪几种交互方式? A. 平行视界 B.全局消息通知 C.分屏 D.悬浮窗 答案:ACD 分析:系统提供了悬浮窗、分屏、平行视界三种多窗口交互,为用户在大屏幕设备上的多任务并行、便捷…...

【电路基础 · 3】实际电压源 实际电流源;两种电源的等效情况;戴维南模型 诺顿模型(自用)
总览 1.实际电源的两种模型和它们的等效变换 2.两种电源的等效情况 3.戴维南模型 && 诺顿模型 一、实际电源的两种模型和它们的等效变换 1.实际电压源 实际电压源不允许短路。因为它的内阻太小,如果短路,电流很大,可能会烧毁电源…...

案例-猜数字游戏
文章目录 效果展示初始画面演示视频 代码区 效果展示 初始画面 演示视频 猜数字游戏 代码区 <!DOCTYPE html> <html lang"en"> <head><meta charset"UTF-8"><meta name"viewport" content"widthdevice-width,…...

POI数据的处理与分析
POI概念 POI(Point of Interest,兴趣点)数据指的是地理空间数据中的一类,表示某一具体地点或位置的信息。通常,这些数据包含位置坐标(经纬度)、名称、地址、类别和其他相关信息。POI 数据广泛应…...