当前位置: 首页 > news >正文

G2O 通过工厂函数类 OptimizationAlgorithmFactory 来生成固定搭配的优化算法

         OptimizationAlgorithmFactory 类位于 optimization_algorithm_factory.h

//***g2o源码 g2o/g2o/core/optimization_algorithm_factory.h ***//
/*** \brief create solvers based on their short name** Factory to allocate solvers based on their short name.* The Factory is implemented as a sigleton and the single* instance can be accessed via the instance() function.*/
/*** \brief 工厂类用于根据优化算法的名称创建不同的优化算法(OptimizationAlgorithm)** 工厂类是单例模式(singleton)的实现,可以通过instance()方法获取唯一的实例,* 并通过destroy()方法释放实例。*/class G2O_CORE_API OptimizationAlgorithmFactory{public:typedef std::list<AbstractOptimizationAlgorithmCreator*>      CreatorList;//! return the instance//! 获取工厂类的唯一实例static OptimizationAlgorithmFactory* instance();//! free the instance//! 释放唯一实例static void destroy();/*** register a specific creator for allocating a solver* 注册特定的创建者 creator 以分配求解器 solver*/void registerSolver(AbstractOptimizationAlgorithmCreator* c);/*** unregister a specific creator for allocating a solver*/void unregisterSolver(AbstractOptimizationAlgorithmCreator* c);/*** construct a solver based on its name, e.g., var, fix3_2_cholmod* 根据名称 tag 来创建求解器 solver*/OptimizationAlgorithm* construct(const std::string& tag, OptimizationAlgorithmProperty& solverProperty) const;//! list the known solvers into a stream//! 将已知的求解器 solver 列到流中void listSolvers(std::ostream& os) const;//! return the underlying list of creators//! 返回创建者 creators 的基本列表const CreatorList& creatorList() const { return _creator;}protected:OptimizationAlgorithmFactory();~OptimizationAlgorithmFactory();CreatorList _creator;CreatorList::const_iterator findSolver(const std::string& name) const;CreatorList::iterator findSolver(const std::string& name);private:static OptimizationAlgorithmFactory* factoryInstance;};

        示例代码: 

// 这里使用一个工厂函数同时初始化迭代方式和线性求解方式,后续可以将迭代方式(总求解器 solver)和线性求解方式(线性求解器 LinearSolver)分开// 创建一个指向g2o::OptimizationAlgorithmFactory的实例指针g2o::OptimizationAlgorithmFactory *solver_factory = g2o::OptimizationAlgorithmFactory::instance();// 定义一个 g2o::OptimizationAlgorithmProperty 类型的对象用于存储与优化算法相关的元信息g2o::OptimizationAlgorithmProperty solver_property;// 根据名称 tag 创建求解器 solver,调用 construct() 时,函数会将所构建的求解器相关的元信息存储到这个对象中,// 比如该求解器的名称、是否需要舒尔补、位姿自由度、地图路标自由度等。g2o::OptimizationAlgorithm *solver = solver_factory->construct("lm_var", solver_property);std::unique_ptr<g2o::SparseOptimizer> graph_ptr_;graph_ptr_.reset(new g2o::SparseOptimizer());graph_ptr_->setAlgorithm(solver);if (!graph_ptr_->solver()) {LOG(ERROR) << "G2O 优化器创建失败!";}// 初始化鲁棒核函数的工厂函数g2o::RobustKernelFactory *robust_kernel_factory_ = g2o::RobustKernelFactory::instance();

        其中,OptimizationAlgorithm* construct(const std::string& tag, OptimizationAlgorithmProperty& solverProperty) const; 函数中 tag 的所有可用算法与其对应描述有: 

//*** g2o源码 g2o/g2o/solvers/cholmod/solver_cholmod.cpp ***//
G2O_REGISTER_OPTIMIZATION_LIBRARY(cholmod);G2O_REGISTER_OPTIMIZATION_ALGORITHM(gn_var_cholmod,new CholmodSolverCreator(OptimizationAlgorithmProperty("gn_var_cholmod","Gauss-Newton: Cholesky solver using CHOLMOD (variable blocksize)","CHOLMOD", false, Eigen::Dynamic, Eigen::Dynamic)));
G2O_REGISTER_OPTIMIZATION_ALGORITHM(gn_fix3_2_cholmod,new CholmodSolverCreator(OptimizationAlgorithmProperty("gn_fix3_2_cholmod","Gauss-Newton: Cholesky solver using CHOLMOD (fixed blocksize)","CHOLMOD", true, 3, 2)));
G2O_REGISTER_OPTIMIZATION_ALGORITHM(gn_fix6_3_cholmod,new CholmodSolverCreator(OptimizationAlgorithmProperty("gn_fix6_3_cholmod","Gauss-Newton: Cholesky solver using CHOLMOD (fixed blocksize)","CHOLMOD", true, 6, 3)));
G2O_REGISTER_OPTIMIZATION_ALGORITHM(gn_fix7_3_cholmod,new CholmodSolverCreator(OptimizationAlgorithmProperty("gn_fix7_3_cholmod","Gauss-Newton: Cholesky solver using CHOLMOD (fixed blocksize)","CHOLMOD", true, 7, 3)));
G2O_REGISTER_OPTIMIZATION_ALGORITHM(lm_var_cholmod,new CholmodSolverCreator(OptimizationAlgorithmProperty("lm_var_cholmod","Levenberg: Cholesky solver using CHOLMOD (variable blocksize)","CHOLMOD", false, Eigen::Dynamic, Eigen::Dynamic)));
G2O_REGISTER_OPTIMIZATION_ALGORITHM(lm_fix3_2_cholmod,new CholmodSolverCreator(OptimizationAlgorithmProperty("lm_fix3_2_cholmod","Levenberg: Cholesky solver using CHOLMOD (fixed blocksize)", "CHOLMOD",true, 3, 2)));
G2O_REGISTER_OPTIMIZATION_ALGORITHM(lm_fix6_3_cholmod,new CholmodSolverCreator(OptimizationAlgorithmProperty("lm_fix6_3_cholmod","Levenberg: Cholesky solver using CHOLMOD (fixed blocksize)", "CHOLMOD",true, 6, 3)));
G2O_REGISTER_OPTIMIZATION_ALGORITHM(lm_fix7_3_cholmod,new CholmodSolverCreator(OptimizationAlgorithmProperty("lm_fix7_3_cholmod","Levenberg: Cholesky solver using CHOLMOD (fixed blocksize)", "CHOLMOD",true, 7, 3)));
G2O_REGISTER_OPTIMIZATION_ALGORITHM(dl_var_cholmod,new CholmodSolverCreator(OptimizationAlgorithmProperty("dl_var_cholmod","Dogleg: Cholesky solver using CHOLMOD (variable blocksize)", "CHOLMOD",false, Eigen::Dynamic, Eigen::Dynamic)));
//*** g2o源码 g2o/g2o/solvers/csparse/solver_csparse.cpp ***//G2O_REGISTER_OPTIMIZATION_LIBRARY(csparse);G2O_REGISTER_OPTIMIZATION_ALGORITHM(gn_var_csparse, new CSparseSolverCreator(OptimizationAlgorithmProperty("gn_var_csparse", "Gauss-Newton: Cholesky solver using CSparse (variable blocksize)", "CSparse", false, Eigen::Dynamic, Eigen::Dynamic)));G2O_REGISTER_OPTIMIZATION_ALGORITHM(gn_fix3_2_csparse, new CSparseSolverCreator(OptimizationAlgorithmProperty("gn_fix3_2_csparse", "Gauss-Newton: Cholesky solver using CSparse (fixed blocksize)", "CSparse", true, 3, 2)));G2O_REGISTER_OPTIMIZATION_ALGORITHM(gn_fix6_3_csparse, new CSparseSolverCreator(OptimizationAlgorithmProperty("gn_fix6_3_csparse", "Gauss-Newton: Cholesky solver using CSparse (fixed blocksize)", "CSparse", true, 6, 3)));G2O_REGISTER_OPTIMIZATION_ALGORITHM(gn_fix7_3_csparse, new CSparseSolverCreator(OptimizationAlgorithmProperty("gn_fix7_3_csparse", "Gauss-Newton: Cholesky solver using CSparse (fixed blocksize)", "CSparse", true, 7, 3)));G2O_REGISTER_OPTIMIZATION_ALGORITHM(lm_var_csparse, new CSparseSolverCreator(OptimizationAlgorithmProperty("lm_var_csparse", "Levenberg: Cholesky solver using CSparse (variable blocksize)", "CSparse", false, Eigen::Dynamic, Eigen::Dynamic)));G2O_REGISTER_OPTIMIZATION_ALGORITHM(lm_fix3_2_csparse, new CSparseSolverCreator(OptimizationAlgorithmProperty("lm_fix3_2_csparse", "Levenberg: Cholesky solver using CSparse (fixed blocksize)", "CSparse", true, 3, 2)));G2O_REGISTER_OPTIMIZATION_ALGORITHM(lm_fix6_3_csparse, new CSparseSolverCreator(OptimizationAlgorithmProperty("lm_fix6_3_csparse", "Levenberg: Cholesky solver using CSparse (fixed blocksize)", "CSparse", true, 6, 3)));G2O_REGISTER_OPTIMIZATION_ALGORITHM(lm_fix7_3_csparse, new CSparseSolverCreator(OptimizationAlgorithmProperty("lm_fix7_3_csparse", "Levenberg: Cholesky solver using CSparse (fixed blocksize)", "CSparse", true, 7, 3)));G2O_REGISTER_OPTIMIZATION_ALGORITHM(dl_var_csparse, new CSparseSolverCreator(OptimizationAlgorithmProperty("dl_var_csparse", "Dogleg: Cholesky solver using CSparse (variable blocksize)", "CSparse", false, Eigen::Dynamic, Eigen::Dynamic)));
//*** g2o源码 g2o/g2o/solvers/eigen/solver_eigen.cpp ***//G2O_REGISTER_OPTIMIZATION_LIBRARY(eigen);G2O_REGISTER_OPTIMIZATION_ALGORITHM(gn_var, new EigenSolverCreator(OptimizationAlgorithmProperty("gn_var", "Gauss-Newton: Cholesky solver using Eigen's Sparse Cholesky methods (variable blocksize)", "Eigen", false, Eigen::Dynamic, Eigen::Dynamic)));G2O_REGISTER_OPTIMIZATION_ALGORITHM(gn_fix3_2, new EigenSolverCreator(OptimizationAlgorithmProperty("gn_fix3_2", "Gauss-Newton: Cholesky solver using  Eigen's Sparse Cholesky (fixed blocksize)", "Eigen", true, 3, 2)));G2O_REGISTER_OPTIMIZATION_ALGORITHM(gn_fix6_3, new EigenSolverCreator(OptimizationAlgorithmProperty("gn_fix6_3", "Gauss-Newton: Cholesky solver using  Eigen's Sparse Cholesky (fixed blocksize)", "Eigen", true, 6, 3)));G2O_REGISTER_OPTIMIZATION_ALGORITHM(gn_fix7_3, new EigenSolverCreator(OptimizationAlgorithmProperty("gn_fix7_3", "Gauss-Newton: Cholesky solver using  Eigen's Sparse Cholesky (fixed blocksize)", "Eigen", true, 7, 3)));G2O_REGISTER_OPTIMIZATION_ALGORITHM(lm_var, new EigenSolverCreator(OptimizationAlgorithmProperty("lm_var", "Levenberg: Cholesky solver using Eigen's Sparse Cholesky methods (variable blocksize)", "Eigen", false, Eigen::Dynamic, Eigen::Dynamic)));G2O_REGISTER_OPTIMIZATION_ALGORITHM(lm_fix3_2, new EigenSolverCreator(OptimizationAlgorithmProperty("lm_fix3_2", "Levenberg: Cholesky solver using  Eigen's Sparse Cholesky (fixed blocksize)", "Eigen", true, 3, 2)));G2O_REGISTER_OPTIMIZATION_ALGORITHM(lm_fix6_3, new EigenSolverCreator(OptimizationAlgorithmProperty("lm_fix6_3", "Levenberg: Cholesky solver using  Eigen's Sparse Cholesky (fixed blocksize)", "Eigen", true, 6, 3)));G2O_REGISTER_OPTIMIZATION_ALGORITHM(lm_fix7_3, new EigenSolverCreator(OptimizationAlgorithmProperty("lm_fix7_3", "Levenberg: Cholesky solver using  Eigen's Sparse Cholesky (fixed blocksize)", "Eigen", true, 7, 3)));G2O_REGISTER_OPTIMIZATION_ALGORITHM(dl_var, new EigenSolverCreator(OptimizationAlgorithmProperty("dl_var", "Dogleg: Cholesky solver using Eigen's Sparse Cholesky methods (variable blocksize)", "Eigen", false, Eigen::Dynamic, Eigen::Dynamic)));
//*** g2o源码 g2o/g2o/solvers/dense/solver_dense.cpp ***//
G2O_REGISTER_OPTIMIZATION_LIBRARY(dense);G2O_REGISTER_OPTIMIZATION_ALGORITHM(gn_dense, new DenseSolverCreator(OptimizationAlgorithmProperty("gn_dense", "Gauss-Newton: Dense solver (variable blocksize)","Dense", false, Eigen::Dynamic, Eigen::Dynamic)));
G2O_REGISTER_OPTIMIZATION_ALGORITHM(gn_dense3_2,new DenseSolverCreator(OptimizationAlgorithmProperty("gn_dense3_2", "Gauss-Newton: Dense solver (fixed blocksize)", "Dense",true, 3, 2)));
G2O_REGISTER_OPTIMIZATION_ALGORITHM(gn_dense6_3,new DenseSolverCreator(OptimizationAlgorithmProperty("gn_dense6_3", "Gauss-Newton: Dense solver (fixed blocksize)", "Dense",true, 6, 3)));
G2O_REGISTER_OPTIMIZATION_ALGORITHM(gn_dense7_3,new DenseSolverCreator(OptimizationAlgorithmProperty("gn_dense7_3", "Gauss-Newton: Dense solver (fixed blocksize)", "Dense",true, 7, 3)));
G2O_REGISTER_OPTIMIZATION_ALGORITHM(lm_dense, new DenseSolverCreator(OptimizationAlgorithmProperty("lm_dense", "Levenberg: Dense solver (variable blocksize)","Dense", false, -1, -1)));
G2O_REGISTER_OPTIMIZATION_ALGORITHM(lm_dense3_2, new DenseSolverCreator(OptimizationAlgorithmProperty("lm_dense3_2", "Levenberg: Dense solver (fixed blocksize)","Dense", true, 3, 2)));
G2O_REGISTER_OPTIMIZATION_ALGORITHM(lm_dense6_3, new DenseSolverCreator(OptimizationAlgorithmProperty("lm_dense6_3", "Levenberg: Dense solver (fixed blocksize)","Dense", true, 6, 3)));
G2O_REGISTER_OPTIMIZATION_ALGORITHM(lm_dense7_3, new DenseSolverCreator(OptimizationAlgorithmProperty("lm_dense7_3", "Levenberg: Dense solver (fixed blocksize)","Dense", true, 7, 3)));
//*** g2o源码 g2o/g2o/solvers/pcg/solver_pcg.cpp ***//
G2O_REGISTER_OPTIMIZATION_LIBRARY(pcg);G2O_REGISTER_OPTIMIZATION_ALGORITHM(gn_pcg, new PCGSolverCreator(OptimizationAlgorithmProperty("gn_pcg","Gauss-Newton: PCG solver using block-Jacobi pre-conditioner ""(variable blocksize)","PCG", false, Eigen::Dynamic, Eigen::Dynamic)));
G2O_REGISTER_OPTIMIZATION_ALGORITHM(gn_pcg3_2, new PCGSolverCreator(OptimizationAlgorithmProperty("gn_pcg3_2","Gauss-Newton: PCG solver using block-Jacobi ""pre-conditioner (fixed blocksize)","PCG", true, 3, 2)));
G2O_REGISTER_OPTIMIZATION_ALGORITHM(gn_pcg6_3, new PCGSolverCreator(OptimizationAlgorithmProperty("gn_pcg6_3","Gauss-Newton: PCG solver using block-Jacobi ""pre-conditioner (fixed blocksize)","PCG", true, 6, 3)));
G2O_REGISTER_OPTIMIZATION_ALGORITHM(gn_pcg7_3, new PCGSolverCreator(OptimizationAlgorithmProperty("gn_pcg7_3","Gauss-Newton: PCG solver using block-Jacobi ""pre-conditioner (fixed blocksize)","PCG", true, 7, 3)));
G2O_REGISTER_OPTIMIZATION_ALGORITHM(lm_pcg, new PCGSolverCreator(OptimizationAlgorithmProperty("lm_pcg","Levenberg: PCG solver using block-Jacobi pre-conditioner ""(variable blocksize)","PCG", false, Eigen::Dynamic, Eigen::Dynamic)));
G2O_REGISTER_OPTIMIZATION_ALGORITHM(lm_pcg3_2, new PCGSolverCreator(OptimizationAlgorithmProperty("lm_pcg3_2","Levenberg: PCG solver using block-Jacobi pre-conditioner ""(fixed blocksize)","PCG", true, 3, 2)));
G2O_REGISTER_OPTIMIZATION_ALGORITHM(lm_pcg6_3, new PCGSolverCreator(OptimizationAlgorithmProperty("lm_pcg6_3","Levenberg: PCG solver using block-Jacobi pre-conditioner ""(fixed blocksize)","PCG", true, 6, 3)));
G2O_REGISTER_OPTIMIZATION_ALGORITHM(lm_pcg7_3, new PCGSolverCreator(OptimizationAlgorithmProperty("lm_pcg7_3","Levenberg: PCG solver using block-Jacobi pre-conditioner ""(fixed blocksize)","PCG", true, 7, 3)));

参考

        [代码实践] G2O 学习记录(一):2D 位姿图优化

        [代码实践] G2O 学习记录(二):3D 位姿图优化

相关文章:

G2O 通过工厂函数类 OptimizationAlgorithmFactory 来生成固定搭配的优化算法

OptimizationAlgorithmFactory 类位于 optimization_algorithm_factory.h //***g2o源码 g2o/g2o/core/optimization_algorithm_factory.h ***// /*** \brief create solvers based on their short name** Factory to allocate solvers based on their short name.* The Factor…...

手机USB连接不显示内部设备,设备管理器显示“MTP”感叹号,解决方案

进入小米驱动下载界面&#xff0c;等小米驱动下载完成后&#xff0c;解压此驱动文件压缩包。 5、小米USB驱动安装方法&#xff1a;右击“计算机”&#xff0c;从弹出的右键菜单中选择“管理”项进入。 6、在打开的“计算机管理”界面中&#xff0c;展开“设备管理器”项&…...

SpringBootWeb快速入门!详解如何创建一个简单的SpringBoot项目?

在现代Web开发中&#xff0c;SpringBoot以其简化的配置和快速的开发效率而受到广大开发者的青睐。本篇文章将带领你从零开始&#xff0c;搭建一个基于SpringBoot的简单Web应用~ 一、前提准备 想要创建一个SpringBoot项目&#xff0c;需要做如下准备&#xff1a; idea集成开发…...

RabbitMQ 入门到精通指南

RabbitMQ 是一种开源消息代理软件&#xff0c;基于 AMQP&#xff08;高级消息队列协议&#xff09;构建&#xff0c;用于异步传输数据&#xff0c;帮助我们解耦系统、削峰流量、处理高并发。本指南将详细介绍 RabbitMQ 的架构设计、使用场景、安装步骤以及一些高级应用&#xf…...

ARM base instruction -- movz

Move wide with zero moves an optionally-shifted 16-bit immediate value to a register. 用零移动宽值将可选移位的16位即时值移动到寄存器。即把立即数移动寄存器前先把寄存器清零。 32-bit variant MOVZ <Wd>, #<imm>{, LSL #<shift>} 64-bit var…...

安装jdk安装开发环境与maven

1.下载maven 链接: https://pan.baidu.com/s/1gTmIWBFBdIQob0cqGG3E_Q 提取码: 42ck&#xff0c;apache-maven-3.8.4-bin.zip 2.安装java jdk yum install -y java-1.8.0-openjdk-devel 3.在/opt目录下新建目录 mkdir /opt/maven 4.将apache-maven-3.8.4-bin.zip上传到/opt/ma…...

openpnp - 图像传送方向要在高级校正之前设置好

文章目录 openpnp - 图像传送方向要在高级校正之前设置好笔记图像传送方向的确定END openpnp - 图像传送方向要在高级校正之前设置好 笔记 图像传送方向和JOG面板的移动控制和实际设备的顶部摄像头/底部摄像头要一致&#xff0c;这样才能和贴板子时的实际操作方向对应起来。 …...

数据库建表规范【记录】

建表规约 【强制】创建表时必须显式指定表存储引擎类型&#xff0c;如无特殊需求&#xff0c;一律为InnoDB。 【强制】必须有行数据的创建时间字段create_date和最后更新时间字段edit_date。 【强制】自增主键命名必须是id&#xff0c;关联表外键命名xxyyzz_id&#xff1b;业务…...

css的动画属性

CSS动画属性是CSS3的一个重要特性&#xff0c;它允许你创建平滑的过渡效果&#xff0c;增强用户的交互体验。CSS动画可以通过keyframes规则和animation属性来创建。 animation属性 animation属性是一个简写属性&#xff0c;用于设置动画的多个属性&#xff0c;包括动画名称、…...

【Ubuntu】PlantUML工具 | 安装 | 语法 | 使用工具画序列图

🌱 PlantUML是一个通用性很强的工具,可以快速、直接地创建各种图表。 目录 1 安装 2 使用PlantUML画序列图 ① 语法 ②示例和效果 利用简单直观的语言,用户可以毫不费力地绘制各种类型的图表。PlantUML 是一个开源项目,支持快速绘制:• 时序图• 用例图• 类图• 对...

微信步数C++

题目&#xff1a; 样例解释&#xff1a; 【样例 #1 解释】 从 (1,1) 出发将走 2 步&#xff0c;从 (1,2) 出发将走 4 步&#xff0c;从 (1,3) 出发将走 4 步。 从 (2,1) 出发将走 2 步&#xff0c;从 (2,2) 出发将走 3 步&#xff0c;从 (2,3) 出发将走 3 步。 从 (3,1) 出发将…...

AI写作工具大比拼:揭秘Claude的神秘魅力以及如何订阅Claude

AI写作困境与Claude的惊喜表现 最近有很多朋友在吐槽AI写的文章不太行&#xff0c;我一看他的要求写的很清楚&#xff0c;已经把提示词都用到位了&#xff0c;例如&#xff1a;写作背景、写作要求等&#xff0c;都有具体写出来。但文章阅读起来就是欠缺点啥。 你们有没有遇到…...

秋招内推2025-招联金融

【投递方式】 直接扫下方二维码&#xff0c;或点击内推官网https://wecruit.hotjob.cn/SU61025e262f9d247b98e0a2c2/mc/position/campus&#xff0c;使用内推码 igcefb 投递&#xff09; 【招聘岗位】 后台开发 前端开发 数据开发 数据运营 算法开发 技术运维 软件测试 产品策…...

GOM引擎启动后M2提示Invalid filename报错的解决办法

在架设一个GOM引擎版本的时候&#xff0c;启动M2就提示Invalid filename&#xff0c;之后的网关就没有办法再启动了&#xff0c;研究了半天也终于是弄好了&#xff0c;其实也简单&#xff0c;就是路径设置的不对&#xff0c;所以无法完成启动&#xff0c;很多人以为在控制台设置…...

CPU 多级缓存

在多线程并发场景下&#xff0c;普通的累加很可能错的 CPU 多级缓存 Main Memory : 主存Cache : 高速缓存&#xff0c;数据的读取存储都经过此高速缓存CPU Core : CPU 核心Bus : 系统总线 CPU Core 和 Cache 通过快速通道连接&#xff0c;Main menory 和 Cache 都挂载到 Bus 上…...

Chrome浏览器调用ActiveX控件--allWebOffice控件功能介绍

allWebOffice控件概述 allWebOffice控件能够实现在浏览器窗口中在线操作文档的应用&#xff08;阅读、编辑、保存等&#xff09;&#xff0c;支持编辑文档时保留修改痕迹&#xff0c;支持书签位置内容动态填充&#xff0c;支持公文套红&#xff0c;支持文档保护控制等诸多办公功…...

JavaScript-下篇

上篇我们学习了&#xff0c;一些基础语法和函数&#xff0c;现在我们学习下篇&#xff0c;主要包括,对象和事件。而对象又包括&#xff0c;数组Arrays&#xff0c;String字符串&#xff0c;BOM&#xff0c;DOM等 JS对象 Arrays数组 数组是一种特殊的对象&#xff0c;用于存储…...

STM32-HAL库驱动DHT11温湿度传感器 --2024.9.28

目录 一、教程简介 二、驱动原理讲解 &#xff08;一&#xff09;通信4步骤 &#xff08;二&#xff09;传感器数据解析 三、CubeMX生成底层代码 &#xff08;一&#xff09;基础配置 &#xff08;二&#xff09;配置DHT11的驱动引脚 &#xff08;三&#xff09;配置串口 四…...

使用C语言获取iostat中的await值的方法和方案

使用C语言获取iostat中的await值的方法和方案 1. 准备工作2. 调用iostat命令并获取输出3. 解析iostat输出4. 完整实现和错误处理5. 注意事项在Linux系统中,iostat命令是sysstat软件包的一部分,用于监控系统的CPU、网卡、tty设备、磁盘、CD-ROM等设备的活动情况和负载信息。其…...

阿里云域名解析和备案

文章目录 1、域名解析2、新手引导3、ICP备案 1、域名解析 2、新手引导 3、ICP备案...

gitee公钥设置、创建库及使用

简介 一、如何安装git 使用gitee&#xff0c;需要先安装git工具。 工具网站地址&#xff1a;https://git-scm.com/downloads 安装完成后&#xff0c;在terminal命令行输入git --version可以查看到git的版本。 二、登录gitee 我们先在 gitee上注册账号并登录。gitee官网&#x…...

融媒体服务中PBO进行多重采样抗锯齿(MSAA)

如果不理解pbo 那先去了解概念&#xff0c;在此不再解释&#xff0c;这是我为了做融合服务器viewpointserver做的一部分工作&#xff0c;融合服务器的功能是将三维和流媒体&#xff0c;AI融合在一起&#xff0c;viewpointserver会直接读取三维工程的文件&#xff0c;同时融合rt…...

说说BPMN概念及应用

BPMN&#xff08;Business Process Modeling and Notation&#xff09;即业务流程建模与标注&#xff0c;是一种由OMG&#xff08;Object Management Group&#xff0c;对象管理组织&#xff09;制定的业务流程建模语言。以下是对BPMN标准的详细解释&#xff1a; 一、BPMN的起…...

【微服务】初识(day1)

基础概念 集群 集群是将一个系统完整的部署到多个服务器&#xff0c;每个服务器提供系统的所有服务&#xff0c;多个服务器可以通过负载均衡完成任务&#xff0c;每个服务器都可以称为集群的节点。 分布式 分布式是将一个系统拆分为多个子系统&#xff0c;多个子系统部署在…...

15分钟学 Python 第40天:Python 爬虫入门(六)第一篇

Day40 &#xff1a;Python 爬取豆瓣网前一百的电影信息 1. 项目背景 在这个项目中&#xff0c;我们将学习如何利用 Python 爬虫技术从豆瓣网抓取前一百部电影的信息。通过这一练习&#xff0c;您将掌握网页抓取的基本流程&#xff0c;包括发送请求、解析HTML、存储数据等核心…...

分层解耦-05.IOCDI-DI详解

一.依赖注入的注解 在我们的项目中&#xff0c;EmpService的实现类有两个&#xff0c;分别是EmpServiceA和EmpServiceB。这两个实现类都加上Service注解。我们运行程序&#xff0c;就会报错。 这是因为我们依赖注入的注解Autowired默认是按照类型来寻找bean对象的进行依赖注入…...

HCIP-HarmonyOS Application Developer 习题(六)

&#xff08;多选&#xff09;1、Harmonyos多窗口交互能力提供了以下哪几种交互方式? A. 平行视界 B.全局消息通知 C.分屏 D.悬浮窗 答案&#xff1a;ACD 分析&#xff1a;系统提供了悬浮窗、分屏、平行视界三种多窗口交互&#xff0c;为用户在大屏幕设备上的多任务并行、便捷…...

【电路基础 · 3】实际电压源 实际电流源;两种电源的等效情况;戴维南模型 诺顿模型(自用)

总览 1.实际电源的两种模型和它们的等效变换 2.两种电源的等效情况 3.戴维南模型 && 诺顿模型 一、实际电源的两种模型和它们的等效变换 1.实际电压源 实际电压源不允许短路。因为它的内阻太小&#xff0c;如果短路&#xff0c;电流很大&#xff0c;可能会烧毁电源…...

案例-猜数字游戏

文章目录 效果展示初始画面演示视频 代码区 效果展示 初始画面 演示视频 猜数字游戏 代码区 <!DOCTYPE html> <html lang"en"> <head><meta charset"UTF-8"><meta name"viewport" content"widthdevice-width,…...

POI数据的处理与分析

POI概念 POI&#xff08;Point of Interest&#xff0c;兴趣点&#xff09;数据指的是地理空间数据中的一类&#xff0c;表示某一具体地点或位置的信息。通常&#xff0c;这些数据包含位置坐标&#xff08;经纬度&#xff09;、名称、地址、类别和其他相关信息。POI 数据广泛应…...