当前位置: 首页 > news >正文

Python代码编写KDJ指标

        KDJ指标由三部分组成:K值、D值、J值,主要用于分析股票市场的超买超卖状态及股价波动的趋势。博主记录学习编写KDJ指标线

import numpy as npdef calculate_kdj(close_prices, n=9, m1=3, m2=3):"""计算KDJ指标:param close_prices: 收盘价序列,np.array 或列表:param n: RSV计算周期,默认9天:param m1: K的平滑天数,默认3天:param m2: D的平滑天数,默认3天:return: K, D, J值序列"""# 计算RSV(未成熟随机值)delta = close_prices.diff(n-1)gain = np.where(delta > 0, delta, 0)loss = np.abs(np.where(delta < 0, delta, 0))avg_gain = gain.rolling(n).sum() / navg_loss = loss.rolling(n).sum() / nrs = avg_gain / avg_lossrsv = 100 * (avg_gain / (avg_gain + avg_loss))# 初始化K, D, Jk = np.zeros_like(rsv)d = np.zeros_like(rsv)j = np.zeros_like(rsv)# 计算第一日的K值k[:m1] = rsv[:m1]d[:m2] = k[:m2]# 计算后续的K, D, J值for i in range(m1, len(rsv)):k[i] = (2/3) * k[i-1] + (1/3) * rsv[i]d[i] = (2/3) * d[i-1] + (1/3) * k[i]j[i] = 3 * k[i] - 2 * d[i]return k, d, j# 示例数据:假设我们有一系列收盘价
close_prices = np.random.uniform(10, 100, 30).cumsum()  # 生成示例收盘价序列
k_values, d_values, j_values = calculate_kdj(close_prices)print("K值:", k_values[-1])
print("D值:", d_values[-1])
print("J值:", j_values[-1])

        这段代码首先定义了一个calculate_kdj函数,用于计算给定收盘价序列的KDJ指标。请注意,为了实际应用这段代码,我们需要替换close_prices变量是实际股票或金融产品的历史收盘价数据。此外,根据我们也可以根据具体的需求,对接到实时数据源或调整参数n、m1、m2来优化指标的表现。

        写这段代码段假设我们已经安装好的Python开发环境,也成功安装了Numpy库。如果没有安装,可以通过运行pip install numpy来安装。这段代码是一个起点,根据实际需求,我们可能还需要添加错误处理、数据验证等逻辑,并考虑如何在实际交易环境中集成和测试此指标。

相关文章:

Python代码编写KDJ指标

KDJ指标由三部分组成&#xff1a;K值、D值、J值&#xff0c;主要用于分析股票市场的超买超卖状态及股价波动的趋势。博主记录学习编写KDJ指标线 import numpy as npdef calculate_kdj(close_prices, n9, m13, m23):"""计算KDJ指标:param close_prices: 收盘价序…...

传统少数民族物品检测系统源码分享

传统少数民族物品检测系统源码分享 [一条龙教学YOLOV8标注好的数据集一键训练_70全套改进创新点发刊_Web前端展示] 1.研究背景与意义 项目参考AAAI Association for the Advancement of Artificial Intelligence 项目来源AACV Association for the Advancement of Computer…...

深度学习中的迁移学习:预训练模型微调与实践

深度学习中的迁移学习&#xff1a;预训练模型微调与实践 目录 &#x1f4a1; 迁移学习的核心概念&#x1f9e0; 预训练模型的使用&#xff1a;ResNet与VGG的微调&#x1f3e5; 迁移学习在医学图像分析中的应用&#x1f504; 实践中的迁移学习微调过程 1. &#x1f4a1; 迁移学…...

原生input实现时间选择器用法

2024.10.08今天我学习了如何用原生的input&#xff0c;实现时间选择器用法&#xff0c;效果如下&#xff1a; 代码如下&#xff1a; <div><input id"yf_start" type"text"> </div><script>$(#yf_start).datepicker({language: zh…...

对象的概念

对象是编程中一个重要的概念&#xff0c;尤其在面向对象编程&#xff08;OOP&#xff09;中更为核心。简单来说&#xff0c;对象是一种数据结构&#xff0c;它可以存储相关的数据和功能。以下是关于对象的详细描述&#xff1a; 1. 对象的定义 对象是属性&#xff08;数据&…...

ARIMA|基于自回归差分移动平均模型时间序列预测

目录 一、基本内容介绍&#xff1a; 二、实际运行效果&#xff1a; 三、原理介绍&#xff1a; 四、完整程序下载&#xff1a; 一、基本内容介绍&#xff1a; 本代码基于Matlab平台&#xff0c;通过ARIMA模型对时间序列数据进行预测。程序以通过调试&#xff0c;解压后打开…...

sqli-labs靶场第三关less-3

sqli-labs靶场第三关less-3 1、确定注入点 http://192.168.128.3/sq/Less-3/?id1 http://192.168.128.3/sq/Less-3/?id2 有不同回显&#xff0c;判断可能存在注入&#xff0c; 2、判断注入类型 输入 http://192.168.128.3/sq/Less-3/?id1 and 11 http://192.168.128.3/sq/L…...

泡沫背后:人工智能的虚幻与现实

人工智能的盛世与泡沫 现今&#xff0c;人工智能热潮席卷科技行业&#xff0c;投资者、创业者和用户都被其光环吸引。然而&#xff0c;深入探讨这种现象&#xff0c;人工智能的泡沫正在形成&#xff0c;乃至具备崩溃的潜质。我们看到的&#xff0c;无非是一场由资本推动的狂欢…...

旅游管理智能化:SpringBoot框架的应用

第一章 绪论 1.1 研究现状 时代的发展&#xff0c;我们迎来了数字化信息时代&#xff0c;它正在渐渐的改变着人们的工作、学习以及娱乐方式。计算机网络&#xff0c;Internet扮演着越来越重要的角色&#xff0c;人们已经离不开网络了&#xff0c;大量的图片、文字、视频冲击着我…...

基于方块编码的图像压缩matlab仿真,带GUI界面

目录 1.算法运行效果图预览 2.算法运行软件版本 3.部分核心程序 4.算法理论概述 4.1 编码单元的表示 4.2编码单元的编码 5.算法完整程序工程 1.算法运行效果图预览 (完整程序运行后无水印) 下图是随着方块大小的变化&#xff0c;图像的压缩率以及对应的图像质量指标PSN…...

不同jdk版本间的替换

假设安装了 JDK 21 后&#xff0c;发现电脑有兼容性问题或其他原因需要切换回 JDK 8&#xff0c;替换过程很简单。你只需卸载 JDK 21 或者让系统使用 JDK 8。以下是详细步骤&#xff1a; 1. 卸载 JDK 21 https://www.oracle.com/java/technologies/downloads/#java21 如果你想…...

408算法题leetcode--第28天

84. 柱状图中最大的矩形 题目地址&#xff1a;84. 柱状图中最大的矩形 - 力扣&#xff08;LeetCode&#xff09; 题解思路&#xff1a;暴力&#xff1a;每一列记为矩形的高&#xff0c;找左边和右边比他小的位置&#xff0c;得到以该列为高对应的宽&#xff1b;这样最大的矩形…...

【无人机设计与控制】无人机三维路径规划,对比蚁群算法,ACO_Astar_RRT算法

摘要 本文探讨了三种不同的无人机三维路径规划算法&#xff0c;即蚁群算法&#xff08;ACO&#xff09;、A算法&#xff08;Astar&#xff09;以及快速随机树算法&#xff08;RRT&#xff09;。通过仿真实验对比了各算法在不同环境下的性能&#xff0c;包括路径长度、计算效率…...

毕设 大数据电影数据分析与可视化系统(源码+论文)

文章目录 0 前言1 项目运行效果2 设计概要3 最后 0 前言 &#x1f525;这两年开始毕业设计和毕业答辩的要求和难度不断提升&#xff0c;传统的毕设题目缺少创新和亮点&#xff0c;往往达不到毕业答辩的要求&#xff0c;这两年不断有学弟学妹告诉学长自己做的项目系统达不到老师…...

10月7日刷题记录

C C...

苍穹外卖学习笔记(十五)

文章目录 一. 缓存菜品缓存菜品DishController.java清除缓存数据 缓存套餐Spring Cachemaven坐标常用注解 入门案例springcachedemo.sqlpom.xmlapplication.ymlCacheDemoApplication.javaWebMvcConfiguration.javaUserController.javaUser.javaUserMapper.java 套餐管理SkyAppl…...

知识图谱入门——5:Neo4j Desktop安装和使用手册(小白向:Cypher 查询语言:逐步教程!Neo4j 优缺点分析)

Neo4j简介 Neo4j 是一个基于图结构的 NoSQL 数据库&#xff0c;专门用于存储、查询和管理图形数据。它的核心思想是使用节点、关系和属性来描述数据。图数据库非常适合那些需要处理复杂关系的数据集&#xff0c;如社交网络、推荐系统、知识图谱等领域。 与传统的关系型数据库…...

35个数据分析模型

这些数据分析模型覆盖了战略规划、市场营销、运营管理、用户行为、财务分析等多个方面&#xff0c;是企业和组织在进行决策分析时常用的工具。分享给大家&#xff0c;如果想要PDF下载&#xff1a; https://edu.cda.cn/group/4/thread/178782 1、SWOT模型 SWOT模型是一种战略分…...

Java | Leetcode Java题解之第457题环形数组是否存在循环

题目&#xff1a; 题解&#xff1a; class Solution {public boolean circularArrayLoop(int[] nums) {int n nums.length;for (int i 0; i < n; i) {if (nums[i] 0) {continue;}int slow i, fast next(nums, i);// 判断非零且方向相同while (nums[slow] * nums[fast]…...

date:10.4(Content:Mr.Peng)( C language practice)

void reverse(char* p, int len) {char* left p;char* right p len - 2;while (left < right){char* temp left;*left *right;//当*left*right后&#xff0c;*temp已经被改为f了*right *temp;//你再*temp赋值给*right时&#xff0c;已经没用了left;right--;}}int main…...

多云管理“拦路虎”:深入解析网络互联、身份同步与成本可视化的技术复杂度​

一、引言&#xff1a;多云环境的技术复杂性本质​​ 企业采用多云策略已从技术选型升维至生存刚需。当业务系统分散部署在多个云平台时&#xff0c;​​基础设施的技术债呈现指数级积累​​。网络连接、身份认证、成本管理这三大核心挑战相互嵌套&#xff1a;跨云网络构建数据…...

web vue 项目 Docker化部署

Web 项目 Docker 化部署详细教程 目录 Web 项目 Docker 化部署概述Dockerfile 详解 构建阶段生产阶段 构建和运行 Docker 镜像 1. Web 项目 Docker 化部署概述 Docker 化部署的主要步骤分为以下几个阶段&#xff1a; 构建阶段&#xff08;Build Stage&#xff09;&#xff1a…...

调用支付宝接口响应40004 SYSTEM_ERROR问题排查

在对接支付宝API的时候&#xff0c;遇到了一些问题&#xff0c;记录一下排查过程。 Body:{"datadigital_fincloud_generalsaas_face_certify_initialize_response":{"msg":"Business Failed","code":"40004","sub_msg…...

docker详细操作--未完待续

docker介绍 docker官网: Docker&#xff1a;加速容器应用程序开发 harbor官网&#xff1a;Harbor - Harbor 中文 使用docker加速器: Docker镜像极速下载服务 - 毫秒镜像 是什么 Docker 是一种开源的容器化平台&#xff0c;用于将应用程序及其依赖项&#xff08;如库、运行时环…...

FFmpeg 低延迟同屏方案

引言 在实时互动需求激增的当下&#xff0c;无论是在线教育中的师生同屏演示、远程办公的屏幕共享协作&#xff0c;还是游戏直播的画面实时传输&#xff0c;低延迟同屏已成为保障用户体验的核心指标。FFmpeg 作为一款功能强大的多媒体框架&#xff0c;凭借其灵活的编解码、数据…...

【CSS position 属性】static、relative、fixed、absolute 、sticky详细介绍,多层嵌套定位示例

文章目录 ★ position 的五种类型及基本用法 ★ 一、position 属性概述 二、position 的五种类型详解(初学者版) 1. static(默认值) 2. relative(相对定位) 3. absolute(绝对定位) 4. fixed(固定定位) 5. sticky(粘性定位) 三、定位元素的层级关系(z-i…...

DBAPI如何优雅的获取单条数据

API如何优雅的获取单条数据 案例一 对于查询类API&#xff0c;查询的是单条数据&#xff0c;比如根据主键ID查询用户信息&#xff0c;sql如下&#xff1a; select id, name, age from user where id #{id}API默认返回的数据格式是多条的&#xff0c;如下&#xff1a; {&qu…...

实现弹窗随键盘上移居中

实现弹窗随键盘上移的核心思路 在Android中&#xff0c;可以通过监听键盘的显示和隐藏事件&#xff0c;动态调整弹窗的位置。关键点在于获取键盘高度&#xff0c;并计算剩余屏幕空间以重新定位弹窗。 // 在Activity或Fragment中设置键盘监听 val rootView findViewById<V…...

python执行测试用例,allure报乱码且未成功生成报告

allure执行测试用例时显示乱码&#xff1a;‘allure’ &#xfffd;&#xfffd;&#xfffd;&#xfffd;&#xfffd;ڲ&#xfffd;&#xfffd;&#xfffd;&#xfffd;ⲿ&#xfffd;&#xfffd;&#xfffd;Ҳ&#xfffd;&#xfffd;&#xfffd;ǿ&#xfffd;&am…...

大语言模型(LLM)中的KV缓存压缩与动态稀疏注意力机制设计

随着大语言模型&#xff08;LLM&#xff09;参数规模的增长&#xff0c;推理阶段的内存占用和计算复杂度成为核心挑战。传统注意力机制的计算复杂度随序列长度呈二次方增长&#xff0c;而KV缓存的内存消耗可能高达数十GB&#xff08;例如Llama2-7B处理100K token时需50GB内存&a…...