当前位置: 首页 > news >正文

ARIMA|基于自回归差分移动平均模型时间序列预测

目录

一、基本内容介绍:

二、实际运行效果:

三、原理介绍:

四、完整程序下载:


一、基本内容介绍:

本代码基于Matlab平台,通过ARIMA模型对时间序列数据进行预测。程序以通过调试,解压后打开主函数即可直接运行看到结果。

首先,对原始数据进行去趋势处理,并采用ADF检验确保序列平稳化。对于不平稳的序列,进行差分处理,直至满足平稳性要求。

随后,利用AIC准则选择最优的ARIMA模型,通过ARMAX方法定阶,并对数据进行多步预测与预报。在得到预测结果后,对差分操作进行还原,从

而恢复时间序列的整体趋势。

最后,还提供了多种可视化手段,包括预测值与实际值的对比、自相关与偏自相关图、预测误差图及误差直方图。

数据采用Excel格式导入,直接替换Excel数据即用于自己的任务,适合新手小白。

二、实际运行效果:

三、原理介绍:

时间序列分析是一种用于预测未来趋势和模式的统计方法。它在许多领域中都有广泛的应用,包括经济学、金融学、气象学和市场研究等。其中,ARIMA模型是一种常用的时间序列预测模型,它结合了自回归(AR)和移动平均(MA)的特性,通过对时间序列数据的差分运算来建立模型。

ARIMA模型的核心思想是将时间序列的趋势和季节性因素进行分解,然后建立一个能够捕捉这些因素的数学模型。这个模型可以用来预测未来的数值,并提供一定的置信区间。

ARIMA模型的名称代表了它的三个主要组成部分:自回归(AR)、差分(I)和移动平均(MA)。自回归部分指的是模型使用前一时间点的观测值来预测当前时间点的观测值。差分部分指的是对时间序列进行差分运算,以消除非平稳性。移动平均部分指的是使用前一时间点的误差项来预测当前时间点的观测值。

ARIMA模型的参数设置是通过对时间序列数据的观察和分析来确定的。其中,AR部分的参数p表示模型使用的前p个时间点的观测值,MA部分的参数q表示模型使用的前q个误差项,差分部分的参数d表示进行的差分次数。

ARIMA模型的预测结果可以通过计算模型的残差来评估。残差是观测值与模型预测值之间的差异,它可以用来检验模型的拟合程度和预测精度。如果残差的均值接近于零,并且没有明显的趋势或季节性,那么模型的拟合效果就比较好。

在实际应用中,ARIMA模型可以用于各种时间序列预测问题。例如,它可以用来预测未来一段时间内的销售额、股票价格、气温变化等。在金融领域,ARIMA模型也被广泛应用于股票市场的预测和交易策略的制定。

四、完整程序下载:

相关文章:

ARIMA|基于自回归差分移动平均模型时间序列预测

目录 一、基本内容介绍: 二、实际运行效果: 三、原理介绍: 四、完整程序下载: 一、基本内容介绍: 本代码基于Matlab平台,通过ARIMA模型对时间序列数据进行预测。程序以通过调试,解压后打开…...

sqli-labs靶场第三关less-3

sqli-labs靶场第三关less-3 1、确定注入点 http://192.168.128.3/sq/Less-3/?id1 http://192.168.128.3/sq/Less-3/?id2 有不同回显,判断可能存在注入, 2、判断注入类型 输入 http://192.168.128.3/sq/Less-3/?id1 and 11 http://192.168.128.3/sq/L…...

泡沫背后:人工智能的虚幻与现实

人工智能的盛世与泡沫 现今,人工智能热潮席卷科技行业,投资者、创业者和用户都被其光环吸引。然而,深入探讨这种现象,人工智能的泡沫正在形成,乃至具备崩溃的潜质。我们看到的,无非是一场由资本推动的狂欢…...

旅游管理智能化:SpringBoot框架的应用

第一章 绪论 1.1 研究现状 时代的发展,我们迎来了数字化信息时代,它正在渐渐的改变着人们的工作、学习以及娱乐方式。计算机网络,Internet扮演着越来越重要的角色,人们已经离不开网络了,大量的图片、文字、视频冲击着我…...

基于方块编码的图像压缩matlab仿真,带GUI界面

目录 1.算法运行效果图预览 2.算法运行软件版本 3.部分核心程序 4.算法理论概述 4.1 编码单元的表示 4.2编码单元的编码 5.算法完整程序工程 1.算法运行效果图预览 (完整程序运行后无水印) 下图是随着方块大小的变化,图像的压缩率以及对应的图像质量指标PSN…...

不同jdk版本间的替换

假设安装了 JDK 21 后,发现电脑有兼容性问题或其他原因需要切换回 JDK 8,替换过程很简单。你只需卸载 JDK 21 或者让系统使用 JDK 8。以下是详细步骤: 1. 卸载 JDK 21 https://www.oracle.com/java/technologies/downloads/#java21 如果你想…...

408算法题leetcode--第28天

84. 柱状图中最大的矩形 题目地址:84. 柱状图中最大的矩形 - 力扣(LeetCode) 题解思路:暴力:每一列记为矩形的高,找左边和右边比他小的位置,得到以该列为高对应的宽;这样最大的矩形…...

【无人机设计与控制】无人机三维路径规划,对比蚁群算法,ACO_Astar_RRT算法

摘要 本文探讨了三种不同的无人机三维路径规划算法,即蚁群算法(ACO)、A算法(Astar)以及快速随机树算法(RRT)。通过仿真实验对比了各算法在不同环境下的性能,包括路径长度、计算效率…...

毕设 大数据电影数据分析与可视化系统(源码+论文)

文章目录 0 前言1 项目运行效果2 设计概要3 最后 0 前言 🔥这两年开始毕业设计和毕业答辩的要求和难度不断提升,传统的毕设题目缺少创新和亮点,往往达不到毕业答辩的要求,这两年不断有学弟学妹告诉学长自己做的项目系统达不到老师…...

10月7日刷题记录

C C...

苍穹外卖学习笔记(十五)

文章目录 一. 缓存菜品缓存菜品DishController.java清除缓存数据 缓存套餐Spring Cachemaven坐标常用注解 入门案例springcachedemo.sqlpom.xmlapplication.ymlCacheDemoApplication.javaWebMvcConfiguration.javaUserController.javaUser.javaUserMapper.java 套餐管理SkyAppl…...

知识图谱入门——5:Neo4j Desktop安装和使用手册(小白向:Cypher 查询语言:逐步教程!Neo4j 优缺点分析)

Neo4j简介 Neo4j 是一个基于图结构的 NoSQL 数据库,专门用于存储、查询和管理图形数据。它的核心思想是使用节点、关系和属性来描述数据。图数据库非常适合那些需要处理复杂关系的数据集,如社交网络、推荐系统、知识图谱等领域。 与传统的关系型数据库…...

35个数据分析模型

这些数据分析模型覆盖了战略规划、市场营销、运营管理、用户行为、财务分析等多个方面,是企业和组织在进行决策分析时常用的工具。分享给大家,如果想要PDF下载: https://edu.cda.cn/group/4/thread/178782 1、SWOT模型 SWOT模型是一种战略分…...

Java | Leetcode Java题解之第457题环形数组是否存在循环

题目&#xff1a; 题解&#xff1a; class Solution {public boolean circularArrayLoop(int[] nums) {int n nums.length;for (int i 0; i < n; i) {if (nums[i] 0) {continue;}int slow i, fast next(nums, i);// 判断非零且方向相同while (nums[slow] * nums[fast]…...

date:10.4(Content:Mr.Peng)( C language practice)

void reverse(char* p, int len) {char* left p;char* right p len - 2;while (left < right){char* temp left;*left *right;//当*left*right后&#xff0c;*temp已经被改为f了*right *temp;//你再*temp赋值给*right时&#xff0c;已经没用了left;right--;}}int main…...

【K8S系列】Kubernetes 集群中的网络常见面试题

在 Kubernetes 面试中&#xff0c;网络是一个重要的主题。理解 Kubernetes 网络模型、服务发现、网络策略等概念对候选人来说至关重要。以下是一些常见的 Kubernetes 网络面试题及其答案&#xff0c;帮助你准备面试。 1. Kubernetes 的网络模型是什么样的&#xff1f; 问题&am…...

Android 无Bug版 多语言设计方案!

出海业务为什么要做多语言&#xff1f; 1.市场扩大与本地化需求&#xff1a; 通过支持多种语言&#xff0c;出海项目可以触及更广泛的国际用户群体&#xff0c;进而扩大其市场份额。 本地化是吸引国际用户的重要策略之一&#xff0c;而语言本地化是其中的核心。使用用户的母语…...

Nginx02-安装

零、文章目录 Nginx02-安装 1、Nginx官网 Nginx官网地址&#xff1a;http://nginx.org/ 2、Nginx下载 &#xff08;1&#xff09;Nginx下载 下载页地址&#xff1a;http://nginx.org/en/download.html &#xff08;2&#xff09;更老版本下载 下载页地址&#xff1a;http…...

大模型基础架构

Transformer 设计者&#xff1a;Google 特点&#xff1a;最流行&#xff0c;几乎所有大模型都用它 代码&#xff1a;https://github.com/openai/finetune-transformer-lm/blob/master/train.py RWKV 设计者&#xff1a;PENG Bo 特点&#xff1a;可并行训练&#xff0c;推理性…...

MySQL 实验 10:数据查询(3)—— 聚合函数与分组查询

MySQL 实验 10&#xff1a;数据查询&#xff08;3&#xff09;—— 聚合函数与分组查询 目录 MySQL 实验 10&#xff1a;数据查询&#xff08;3&#xff09;—— 聚合函数与分组查询一、聚合函数1、计数函数&#xff08;COUNT&#xff09;2、求和函数&#xff08;SUM&#xff0…...

华为云AI开发平台ModelArts

华为云ModelArts&#xff1a;重塑AI开发流程的“智能引擎”与“创新加速器”&#xff01; 在人工智能浪潮席卷全球的2025年&#xff0c;企业拥抱AI的意愿空前高涨&#xff0c;但技术门槛高、流程复杂、资源投入巨大的现实&#xff0c;却让许多创新构想止步于实验室。数据科学家…...

通过Wrangler CLI在worker中创建数据库和表

官方使用文档&#xff1a;Getting started Cloudflare D1 docs 创建数据库 在命令行中执行完成之后&#xff0c;会在本地和远程创建数据库&#xff1a; npx wranglerlatest d1 create prod-d1-tutorial 在cf中就可以看到数据库&#xff1a; 现在&#xff0c;您的Cloudfla…...

23-Oracle 23 ai 区块链表(Blockchain Table)

小伙伴有没有在金融强合规的领域中遇见&#xff0c;必须要保持数据不可变&#xff0c;管理员都无法修改和留痕的要求。比如医疗的电子病历中&#xff0c;影像检查检验结果不可篡改行的&#xff0c;药品追溯过程中数据只可插入无法删除的特性需求&#xff1b;登录日志、修改日志…...

【服务器压力测试】本地PC电脑作为服务器运行时出现卡顿和资源紧张(Windows/Linux)

要让本地PC电脑作为服务器运行时出现卡顿和资源紧张的情况&#xff0c;可以通过以下几种方式模拟或触发&#xff1a; 1. 增加CPU负载 运行大量计算密集型任务&#xff0c;例如&#xff1a; 使用多线程循环执行复杂计算&#xff08;如数学运算、加密解密等&#xff09;。运行图…...

css3笔记 (1) 自用

outline: none 用于移除元素获得焦点时默认的轮廓线 broder:0 用于移除边框 font-size&#xff1a;0 用于设置字体不显示 list-style: none 消除<li> 标签默认样式 margin: xx auto 版心居中 width:100% 通栏 vertical-align 作用于行内元素 / 表格单元格&#xff…...

站群服务器的应用场景都有哪些?

站群服务器主要是为了多个网站的托管和管理所设计的&#xff0c;可以通过集中管理和高效资源的分配&#xff0c;来支持多个独立的网站同时运行&#xff0c;让每一个网站都可以分配到独立的IP地址&#xff0c;避免出现IP关联的风险&#xff0c;用户还可以通过控制面板进行管理功…...

C++_哈希表

本篇文章是对C学习的哈希表部分的学习分享 相信一定会对你有所帮助~ 那咱们废话不多说&#xff0c;直接开始吧&#xff01; 一、基础概念 1. 哈希核心思想&#xff1a; 哈希函数的作用&#xff1a;通过此函数建立一个Key与存储位置之间的映射关系。理想目标&#xff1a;实现…...

手动给中文分词和 直接用神经网络RNN做有什么区别

手动分词和基于神经网络&#xff08;如 RNN&#xff09;的自动分词在原理、实现方式和效果上有显著差异&#xff0c;以下是核心对比&#xff1a; 1. 实现原理对比 对比维度手动分词&#xff08;规则 / 词典驱动&#xff09;神经网络 RNN 分词&#xff08;数据驱动&#xff09…...

6.9本日总结

一、英语 复习默写list11list18&#xff0c;订正07年第3篇阅读 二、数学 学习线代第一讲&#xff0c;写15讲课后题 三、408 学习计组第二章&#xff0c;写计组习题 四、总结 明天结束线代第一章和计组第二章 五、明日计划 英语&#xff1a;复习l默写sit12list17&#…...

[QMT量化交易小白入门]-六十二、ETF轮动中简单的评分算法如何获取历史年化收益32.7%

本专栏主要是介绍QMT的基础用法,常见函数,写策略的方法,也会分享一些量化交易的思路,大概会写100篇左右。 QMT的相关资料较少,在使用过程中不断的摸索,遇到了一些问题,记录下来和大家一起沟通,共同进步。 文章目录 相关阅读1. 策略概述2. 趋势评分模块3 代码解析4 木头…...