性能赶超GPT-4!多模态检索最新成果刷爆SOTA!顶会思路确定不学?
关注各大顶会的同学们都知道,今年多模态相关的主题可谓是火爆非常,有许多突破性成果被提出,比如最新的多模态检索增强框架MORE,生成性能猛超GPT-4!
再比如多模态检索模型MARVEL,在所有基准上实现SOTA!可见相比传统单一模态检索,这种多模态检索更具优势,不仅能提供更全面、更准确的检索结果,也能帮助我们提升工作效率。
目前多模态检索逐渐成为了研究焦点,因为它的全面性、准确性和灵活性在多个领域(比如图像检索、医疗诊断等)都很有用武之地,是个拥有广泛应用前景的热门方向。
因此对论文er来说,这也是个很好的发文选择。为了帮助各位快速了解这个方向的最新动态,我整理好了10篇多模态检索今年最新的论文给各位作参考,代码基本都有。
论文原文+开源代码需要的同学看文末
MORE: Multi-mOdal REtrieval Augmented Generative Commonsense Reasoning
方法:论文提出了一种多模态检索增强框架MORE,通过结合文本和图像增强语言模型的常识能力,填补了现有研究在有效利用视觉数据方面的空白;采用跨注意力机制和软提示技术,从多模态检索结果中提取有用信息,并在CommonGen任务中显著提升了生成性能,超越了GPT-3.5和GPT-4。
创新点:
-
创新性地结合文本和图像来增强语言模型的常识能力。
-
通过跨注意力机制加权多模态结果,提取有用信息并忽略噪声。
-
引入查询丢弃训练策略,促使模型有效利用检索增强输入。
-
使用无关结果进行训练,指导模型在不必要时忽略检索输入。
MARVEL: Unlocking the Multi-Modal Capability of Dense Retrieval via Visual Module Plugin
方法:论文提出了多模态检索模型MARVEL,通过视觉模块插件与训练良好的密集检索器结合,并采用图像-标题对比训练预训练视觉模块,以在跨模态文档编码中统一图像和文本,解决模态差异,实现了在所有基准上的最先进性能。
创新点:
-
MARVEL通过视觉模块插件整合视觉模块与T5-ANCE文本检索模型。
-
提出了视觉模块的图像-字幕对比预训练方法,适配视觉模块。
-
在微调过程中,仅优化语言模型参数,提升多模态检索效果。
-
基于ClueWeb22构建了大规模多模态检索基准数据集。
VISTA: Visualized Text Embedding For Universal Multi-Modal Retrieval
方法:论文提出了一种新的嵌入模型VISTA,基于灵活的架构和两种数据生成策略,通过多阶段训练算法有效提升多模态表示能力,填补了文本和图像联合表示研究的空白,实验结果表明在多种多模态检索任务中VISTA表现优异,尤其在零样本和监督情境下。
创新点:
-
引入了一种灵活的模型架构,将强大的文本编码器与图像理解能力相结合,通过视觉标记嵌入实现深度的文本和图像数据融合。
-
开发了两个创新的自动生成图像-文本组合数据集的管道,确保了大规模高质量的数据用于多模态嵌入模型的训练。
-
引入了一种两阶段的训练算法,首先利用大量弱标记数据对视觉标记嵌入与文本编码器进行对齐。
SciMMIR: Benchmarking Scientific Multi-modal Information Retrieval
方法:论文介绍了一个名为SciMMIR的多模态信息检索(MMIR)基准测试,它专注于科学领域的图像-文本配对。该基准测试通过利用开放获取的论文集合,提取了与科学领域相关的数据,构建了一个包含530K精心策划的图像-文本对的数据集。
创新点:
-
创建了一个针对科学领域多模态信息检索的新基准测试集SciMMIR。
-
对图像和文本对进行了详细的层次化标注,以便于更细致的性能评估。
-
对多个模型进行了零样本和微调评估,探索了OCR技术在提升检索性能中的作用。
关注下方《学姐带你玩AI》🚀🚀🚀
回复“多模态检索”获取全部论文+开源代码
码字不易,欢迎大家点赞评论收藏
相关文章:

性能赶超GPT-4!多模态检索最新成果刷爆SOTA!顶会思路确定不学?
关注各大顶会的同学们都知道,今年多模态相关的主题可谓是火爆非常,有许多突破性成果被提出,比如最新的多模态检索增强框架MORE,生成性能猛超GPT-4! 再比如多模态检索模型MARVEL,在所有基准上实现SOTA&…...

基于 Qwen2.5-0.5B 微调训练 Ner 命名实体识别任务
一、Qwen2.5 & 数据集 Qwen2.5 是 Qwen 大型语言模型的最新系列,参数范围从 0.5B 到 72B 不等。 对比 Qwen2 最新的 Qwen2.5 进行了以下改进: 知识明显增加,并且大大提高了编码和数学能力。在指令跟随、生成长文本(超过 8K…...

16【Protues51单片机仿真】智能洗衣机倒计时系统
目录 一、主要功能 二、硬件资源 三、程序编程 四、实现现象 一、主要功能 用直流电机转动模拟洗衣机。要求 有弱洗、普通洗、强洗三种模式,可通过按键选择。可以设置洗衣时长,通关按键选择15、30、45、60、90分钟。时间到蜂鸣器报警提示。LCD 显示…...

爱心曲线公式大全
local r a*((math.sin(angle) * math.sqrt(math.abs(math.cos(angle)))) / (math.sin(angle) 1.4142) - 2 * math.sin(angle) 2) local x r * math.cos(angle) -- 计算对应的x值 local z r * math.sin(angle) 1.5*a - --曲线公式绘画 local function generateParabola()…...

新书速览|你好,C++
《你好,C》 本书内容 《你好,C》主要介绍C开发环境的搭建、基础语法知识、面向对象编程思想以及标准模板库的应用,特别针对初学者在学习C过程中可能遇到的难点提供了解决方案。全书共分13章,以一个工资程序的不断优化和完善为线索…...
ufw:Linux网络防火墙
一、命令简介 ufw(Uncomplicated Firewall)是一个为 Linux 系统提供简单易用的命令行界面的防火墙管理工具。它是基于 iptables 的,但提供了更简洁的语法和更直观的操作方式,使得配置防火墙变得更加简单,特别适…...

[C++]使用纯opencv部署yolov11-cls图像分类onnx模型
【算法介绍】 在C中使用纯OpenCV部署YOLOv11-cls图像分类ONNX模型是一项具有挑战性的任务,因为YOLOv11通常是用PyTorch等深度学习框架实现的,而OpenCV本身并不直接支持加载和运行PyTorch模型。然而,可以通过一些间接的方法来实现这一目标&am…...

如何使用Immersity AI将图片转换成3D效果视频
随着技术的进步,图片处理变得越来越强大和直观。借助Immersity AI这样的工具,我们现在可以轻松地将平面图片转换成3D效果视频。以下是如何使用Immersity AI进行这一转换的详细步骤。 第一步:访问Immersity AI网站 首先,打开你的…...
安全运营 -- GPO审计
0x00 背景 审计GPO,目的是审计哪些GPO权限分配不合理,包括但不限于审计预期以外的用户具有对GPO的写权限。 0x01 开启审核 在一台windows服务器上 开始 -- 运行 -- 输入 server manager 依次点击Manage -- Add Roles and Features Wizard 角色和功能…...

thinkphp6入门(25)-- 分组查询 GROUP_CONCAT
假设表名为 user_courses,字段为 user_id 和 course_name,存储每个用户选修的课程,想查询每个学生选修的所有课程 SQL 原生查询 SELECT user_id, GROUP_CONCAT(course_name) as courses FROM user_courses GROUP BY user_id; ThinkPHP 代码…...

小米 MIX FOLD工程固件 更换字库修复分区 资源预览与刷写说明
小米 MIX FOLD机型代号 :cetus 该手机搭载骁龙888旗舰处理器 。对于一些因为字库问题损坏导致的故障,更换字库后要先刷写对应的工程底层修复固件。绑定cpu后在写入miui量产固件。 通过博文了解 1💝💝💝-----此机型工程固件的资源刷写注意事项 2💝💝💝-----此…...
Flutter全局统一自定义导航栏返回按钮
Flutter全局统一自定义导航栏返回按钮 在Flutter开发中,导航栏(AppBar)是用户界面的重要组成部分,它不仅提供了页面标题,还可能包含返回按钮、导航按钮等。默认情况下,每个Scaffold的AppBar都会包含一个返…...

微信图片的超能力:5大隐秘功能揭秘,让你成为信息处理大师
在数字化时代,微信已成为我们日常生活中不可或缺的通讯工具。 它不仅仅是聊天的平台,更是一个功能强大的信息处理工具。 今天,我们将揭秘微信中图片背后的五大隐秘功能,让你在使用微信时更加得心应手,成为信息处理的…...

python实现RC4加解密算法
RC4算法 一、算法介绍1.1 背景1.2 密钥调度算法(KSA)1.3 伪随机生成算法(PRGA) 二、代码实现三、演示效果 一、算法介绍 1.1 背景 RC4算法是由Ron Rivest在1987年为RSA数据安全公司设计的一种流密码算法,其安全性主要依赖于其密钥流的随机性和不可预测性。该算法因…...
BLE MESH学习2——自定义MESH网络架构思考
BLE MESH学习2——自定义MESH网络架构思考 基于对WCH CH582这款单片机的了解,其可以实现mesh配网、朋友节点、低功耗节点和中继节点的角色,基本功能无问题。在此基础上,考虑满足IoT需求的MESH架构设计,作为后续设计的“白皮书”。…...

路由器的工作机制
在一个家庭或者一个公司中 路由器的作用主要有两个(①路由–决定了数据包从来源到目的地的路径 通过映射表决定 ②转送–通过路由器知道了映射表 就可以将数据包从路由器的输入端转移给合适的输出端) 我们可以画一张图来分析一下: 我们好好来解析一下这张图&#x…...

Studying-多线程学习Part3 - condition_variable与其使用场景、C++11实现跨平台线程池
来源:多线程学习 目录 condition_variable与其使用场景 生产者与消费者模型 C11实现跨平台线程池 condition_variable与其使用场景 生产者与消费者模型 生产者-消费者模式是一种经典的多线程设计模式,用于解决多个线程之间的数据共享和协作问题。…...

开发自定义starter
环境:Spring Cloud Gateway 需求:防止用户绕过网关直接访问服务器,用户只需引入依赖即可。 1、创建项目 首先创建一个spring boot项目 2、配置pom.xml <?xml version"1.0" encoding"UTF-8"?> <project xm…...

Vue2电商平台(五)、加入购物车,购物车页面
文章目录 一、加入购物车1. 添加到购物车的接口2. 点击按钮的回调函数3. 请求成功后进行路由跳转(1)、创建路由并配置路由规则(2)、路由跳转并传参(本地存储) 二、购物车页面的业务1. uuid生成用户id2. 获取购物车数据3. 计算打勾商品总价4. 全选与商品打勾(1)、商品全部打勾&a…...

众数信科 AI智能体政务服务解决方案——寻知智能笔录系统
政务服务解决方案 寻知智能笔录方案 融合民警口供录入与笔录生成需求 2分钟内生成笔录并提醒错漏 助办案人员二次询问 提升笔录质量和效率 寻知智能笔录系统 众数信科AI智能体 产品亮点 分析、理解行业知识和校验规则 AI实时提醒用户文书需注意部分 全文校验格式、内容…...

Lombok 的 @Data 注解失效,未生成 getter/setter 方法引发的HTTP 406 错误
HTTP 状态码 406 (Not Acceptable) 和 500 (Internal Server Error) 是两类完全不同的错误,它们的含义、原因和解决方法都有显著区别。以下是详细对比: 1. HTTP 406 (Not Acceptable) 含义: 客户端请求的内容类型与服务器支持的内容类型不匹…...

PPT|230页| 制造集团企业供应链端到端的数字化解决方案:从需求到结算的全链路业务闭环构建
制造业采购供应链管理是企业运营的核心环节,供应链协同管理在供应链上下游企业之间建立紧密的合作关系,通过信息共享、资源整合、业务协同等方式,实现供应链的全面管理和优化,提高供应链的效率和透明度,降低供应链的成…...

网络编程(UDP编程)
思维导图 UDP基础编程(单播) 1.流程图 服务器:短信的接收方 创建套接字 (socket)-----------------------------------------》有手机指定网络信息-----------------------------------------------》有号码绑定套接字 (bind)--------------…...

pikachu靶场通关笔记22-1 SQL注入05-1-insert注入(报错法)
目录 一、SQL注入 二、insert注入 三、报错型注入 四、updatexml函数 五、源码审计 六、insert渗透实战 1、渗透准备 2、获取数据库名database 3、获取表名table 4、获取列名column 5、获取字段 本系列为通过《pikachu靶场通关笔记》的SQL注入关卡(共10关࿰…...

均衡后的SNRSINR
本文主要摘自参考文献中的前两篇,相关文献中经常会出现MIMO检测后的SINR不过一直没有找到相关数学推到过程,其中文献[1]中给出了相关原理在此仅做记录。 1. 系统模型 复信道模型 n t n_t nt 根发送天线, n r n_r nr 根接收天线的 MIMO 系…...
JS设计模式(4):观察者模式
JS设计模式(4):观察者模式 一、引入 在开发中,我们经常会遇到这样的场景:一个对象的状态变化需要自动通知其他对象,比如: 电商平台中,商品库存变化时需要通知所有订阅该商品的用户;新闻网站中࿰…...
Webpack性能优化:构建速度与体积优化策略
一、构建速度优化 1、升级Webpack和Node.js 优化效果:Webpack 4比Webpack 3构建时间降低60%-98%。原因: V8引擎优化(for of替代forEach、Map/Set替代Object)。默认使用更快的md4哈希算法。AST直接从Loa…...

逻辑回归暴力训练预测金融欺诈
简述 「使用逻辑回归暴力预测金融欺诈,并不断增加特征维度持续测试」的做法,体现了一种逐步建模与迭代验证的实验思路,在金融欺诈检测中非常有价值,本文作为一篇回顾性记录了早年间公司给某行做反欺诈预测用到的技术和思路。百度…...
根目录0xa0属性对应的Ntfs!_SCB中的FileObject是什么时候被建立的----NTFS源代码分析--重要
根目录0xa0属性对应的Ntfs!_SCB中的FileObject是什么时候被建立的 第一部分: 0: kd> g Breakpoint 9 hit Ntfs!ReadIndexBuffer: f7173886 55 push ebp 0: kd> kc # 00 Ntfs!ReadIndexBuffer 01 Ntfs!FindFirstIndexEntry 02 Ntfs!NtfsUpda…...

【p2p、分布式,区块链笔记 MESH】Bluetooth蓝牙通信 BLE Mesh协议的拓扑结构 定向转发机制
目录 节点的功能承载层(GATT/Adv)局限性: 拓扑关系定向转发机制定向转发意义 CG 节点的功能 节点的功能由节点支持的特性和功能决定。所有节点都能够发送和接收网格消息。节点还可以选择支持一个或多个附加功能,如 Configuration …...