python 实现Edmonds-Karp算法
Edmonds-Karp算法介绍
Edmonds-Karp算法是一种用于解决最大流问题的算法,在计算机科学中广泛应用。以下是关于Edmonds-Karp算法的详细解释:
算法概述
Edmonds-Karp算法是基于Ford-Fulkerson方法的改进,它通过广度优先搜索(BFS)来寻找增广路径。增广路径是网络中从源点到汇点的一条路径,该路径上至少存在一条边,其剩余容量大于0。Edmonds-Karp算法的核心在于,它每次寻找的都是从源点到汇点的最短增广路径,并通过这条路径来增加流量。
算法步骤
初始化:将所有边的流量设置为0,即初始流量为0。
寻找增广路径:使用广度优先搜索(BFS)在剩余网络中寻找从源点到汇点的最短路径。剩余网络是原网络的一个子图,只包含剩余容量大于0的边。
更新流量:如果找到了增广路径,计算路径上的最小剩余容量,并将其作为增加的流量。然后,更新路径上所有边的流量(增加正向边的流量,减少反向边的流量)。
重复过程:重复步骤2和3,直到无法再找到增广路径为止。
输出结果:当没有更多的增广路径时,算法结束,此时从源点到汇点的流量即为最大流。
算法特性
时间复杂度:Edmonds-Karp算法的时间复杂度为O(V * E^2),其中V是图中顶点的数量,E是图中边的数量。在最坏情况下,算法可能需要进行O(E)次迭代,每次迭代的时间复杂度为O(V + E)。由于使用了BFS来寻找最短路径,这确保了每次迭代增加的流量都是最优的。
空间复杂度:Edmonds-Karp算法的空间复杂度为O(V^2),主要是因为它需要使用一个大小为V的队列来存储BFS过程中的顶点。
适用性:Edmonds-Karp算法在处理较小规模的图时表现良好,但在处理大规模图时可能会面临效率问题。通过求解最大流问题,可以优化网络中的流量分配,确保资源的有效利用。
注意事项
虽然Edmonds-Karp算法能够求解最大流问题,但在实际应用中需要根据问题的规模和复杂度选择合适的算法。对于大规模图,可能需要考虑使用更高效的算法来避免性能瓶颈。同时,由于算法涉及到网络流量和资源分配等敏感领域,因此在实际应用中需要谨慎处理,确保算法的准确性和可靠性。
Edmonds-Karp算法python实现样例
Edmonds-Karp算法是一种求解最大流问题的算法,基于Ford-Fulkerson算法。以下是一个Python实现的Edmonds-Karp算法。
from collections import defaultdictclass EdmondsKarp:def __init__(self, graph):self.graph = graphself.num_vertices = len(graph)def bfs(self, s, t, parent):visited = [False] * self.num_verticesvisited[s] = Truequeue = []queue.append(s)while queue:u = queue.pop(0)for v in range(self.num_vertices):if visited[v] == False and self.graph[u][v] > 0:queue.append(v)visited[v] = Trueparent[v] = uif v == t:return Truereturn Falsedef edmonds_karp(self, source, sink):parent = [-1] * self.num_verticesmax_flow = 0while self.bfs(source, sink, parent):path_flow = float("Inf")s = sinkwhile s != source:path_flow = min(path_flow, self.graph[parent[s]][s])s = parent[s]max_flow += path_flowv = sinkwhile v != source:u = parent[v]self.graph[u][v] -= path_flowself.graph[v][u] += path_flowv = parent[v]return max_flow# 示例用法
graph = [[0, 16, 13, 0, 0, 0],[0, 0, 10, 12, 0, 0],[0, 4, 0, 0, 14, 0],[0, 0, 9, 0, 0, 20],[0, 0, 0, 7, 0, 4],[0, 0, 0, 0, 0, 0]]source = 0
sink = 5ek = EdmondsKarp(graph)
max_flow = ek.edmonds_karp(source, sink)
print("最大流量:", max_flow)
在上面的示例中,我们定义了一个名为EdmondsKarp的类,该类接受一个表示有向图的邻接矩阵作为输入。bfs方法用于使用BFS搜索从源节点到汇点的增广路径,并返回是否找到增广路径。edmonds_karp方法使用Edmonds-Karp算法来计算最大流,返回最大流量。
在示例用法中,我们使用一个示例图来计算从源节点0到汇点5的最大流量。
相关文章:
python 实现Edmonds-Karp算法
Edmonds-Karp算法介绍 Edmonds-Karp算法是一种用于解决最大流问题的算法,在计算机科学中广泛应用。以下是关于Edmonds-Karp算法的详细解释: 算法概述 Edmonds-Karp算法是基于Ford-Fulkerson方法的改进,它通过广度优先搜索(BFS&…...
【牛客刷题实战】BC120 争夺前五名
大家好,我是小卡皮巴拉 文章目录 目录 牛客题目: BC120 争夺前五名 题目描述 输入描述: 输出描述: 示例1 示例2 解题思路: 具体思路: 题目要点: 完整代码: 兄弟们共…...
WMS 智慧仓储管理系统的可视化管理_SunWMS
【大家好,我是唐Sun,唐Sun的唐,唐Sun的Sun。一站式数智工厂解决方案服务商】 WMS 智慧仓储管理系统的可视化管理主要表现在以下几个方面: 首先是库存可视化。通过系统,仓库管理人员能够以直观的图表、图形等形式清晰地…...
动态代理代码示例
理解动态代理 动态代理的核心在于代理对象的创建和方法调用是在运行时动态发生的,而不是在编译时就已经确定的性能监控、事务管理、日志记录通常需要使用代理对象对目标对象的功能进行增强为什么JDK动态代理只能代理有接口的类? 因为Proxy.newProxyIns…...
SpringBoot+Activiti7工作流使用进阶实例-高亮显示BPMN流程图( SpringBoot+Activiti+mybatis+shiro实现)
文章目录 说明绘制流程图排他网关设置任务节点设置创建工程修改 pom.xml 文件准备数据库的表和测试数据修改 application.yml 文件配置静态资源Shiro 相关配置ShiroConfiguration.javaMyShiroRealm.java流程控制器添加静态的资源和模板页面运行结果截图源码地址说明 使用 Spri…...
C#使用Lazy<T>提高性能
以下是一些适合使用Lazy<T>的场景: 单例模式 在实现单例模式时,Lazy<T>是非常有用的。如前面提到的示例,它可以确保单例对象在首次被访问时才进行创建,同时在多线程环境下也能保证正确的行为。这种方式比传统的双重检…...
创建读取比特币1P类型地址
创建读取比特币1P类型地址 比特币的地址类型有多种,其中 P2TR(Pay-to-Taproot)地址是基于最近的升级(Taproot)引入的一个新类型。本文将介绍如何创建和读取比特币的 1P 类型地址,主要通过 JavaScript 和相…...
从零开始Hadoop集群环境搭建
目录 1. Centos7.5硬件配置1.1 创建虚拟机1.2 虚拟机系统设置 2. IP地址和主机名称配置3. 软件配置3.1 安装 epel-release3.2 卸载虚拟机自带的JDK3.3 克隆虚拟机3.4 修改克隆虚拟机的IP3.5 JDK安装3.6 Hadoop安装 4. Hadoop目录结构 1. Centos7.5硬件配置 1.1 创建虚拟机 1.2…...
Copley耐环境伺服驱动器 极端环境下高精度控制解决方案
全球工业环境的日益复杂多变,对伺服驱动器的要求不再局限于基本的性能参数,而是在极端环境下的稳定性与可靠性。Copley耐环境伺服驱动器以卓越的性能和出色的环境适应性,为工业自动化领域的高精度控制提供了可靠的解决方案。 一、多样化的产…...
前端的全栈混合之路Meteor篇:分布式数据协议DDP深度剖析
本文属于进阶篇,并不是太适合新人阅读,但纯粹的学习还是可以的,因为后续会实现很多个ddp的版本用于web端、nodejs端、安卓端和ios端,提前预习和复习下。ddp协议是一个C/S架构的协议,但是客户端也同时可以是服务端。 什…...
基于Zynq SDIO WiFi移植一(支持2.4/5G)
基于SDIO接口的WIFI,在应用上,功耗低于USB接口,且无须USB Device支持,满足某些应用场景 1 硬件连接 2 Vivado工程配置 3 驱动编译 3.1 KERNRL CONFIG (build ENV) 修改 export KERNELPATH<path of kernel header>export T…...
数据结构与算法篇(刷题篇 - 链表)
目录 1. 反转链表(简单) 1.1. 题目描述 1.2. 解题思路 方法一:迭代(推荐使用) 方法二:递归(扩展思路) 方法三:使用栈解决 方法四:双链表求解 2. 链表内…...
TinyAgent: 从零开始构建最小化Agent系统
引言 随着大模型(LLM)的崛起,特别是ChatGPT等大模型的广泛应用,基于LLM的系统越来越受欢迎。然而,尽管大模型具备强大的生成能力和推理能力,它们在处理某些专有领域或实时问题时仍然存在局限性。因此&#…...
Android Studio New里面没有New Flutter Project
跟着Flutter中文网的配置教程,安装好了flutter,在Android studio里面也安装了dart和flutter的插件。重启后还是在FIle->New里面没有显示New Flutter Project。 反复卸载重装dart和flutter插件好几次,依然没有效果。 原来是没有把Android APK Suppor…...
linux信号 | 学习信号四步走 | 透析信号是如何被处理的?
前言:本节内容讲述linux信号的捕捉。 我们通过前面的学习, 已经学习了信号的概念, 信号的产生, 信号的保存。 只剩下信号的处理。 而信号的处理我们应该着重注意的是第三种处理方式——信号的捕捉。 也就是说, 这篇文章…...
mysql语句执行过程
具体流程如下: 1】当客户端的SOL发送到MySQL时,首先是到达服务器层的连接器,连接器会对你此次发起的连接进行权限校验,以此来获取你这个账号拥有的权限。当你的账号或密码不正确时,会报用户错误。连接成功如果后续没有任何操作&am…...
最新版本SkyWalking【10.1.0】部署
这里写目录标题 前言前置条件启动Skywalking下载解压启动说明 集成Skywalking Agent下载Agent在IDEA中添加agent启动应用并访问SpringBoot接口 说明 前言 基于当前最新版10.1.0搭建skywalking 前置条件 装有JDK11版本的环境了解SpringBoot相关知识 启动Skywalking 下载 地…...
WSL2 中配置桥接模式、虚拟交换机及固定 IP
WSL2 中配置桥接模式、虚拟交换机及固定 IP 一、创建虚拟交换机1.1 使用 Hyper-V 管理器创建虚拟交换机1.2 使用 PowerShell 创建虚拟交换机 二、更新 WSL 配置三、设置 WSL2 中的静态 IP、网关和 DNS3.1 编辑网络配置文件3.2 应用网络配置3.3 测试网络连接 四、重启 WSL 在使用…...
Unite Shanghai 2024 团结引擎专场 | 团结引擎 OpenHarmony 工程剖析
在 2024 年 7 月 24 日的 Unite Shanghai 2024 团结引擎专场演讲中,Unity中国 OpenHarmony 技术负责人刘伟贤对团结引擎导出的 OpenHarmony 工程进行了细节剖析,详细讲解 XComponent 如何与引擎结合,UI 线程和引擎线程的关联以及 ts/ets 的代…...
计算机毕业设计 基于Hadoop的智慧校园数据共享平台的设计与实现 Python毕业设计 Python毕业设计选题 Spark 大数据【附源码+安装调试】
博主介绍:✌从事软件开发10年之余,专注于Java技术领域、Python人工智能及数据挖掘、小程序项目开发和Android项目开发等。CSDN、掘金、华为云、InfoQ、阿里云等平台优质作者✌ 🍅文末获取源码联系🍅 👇🏻 精…...
Linux 文件类型,目录与路径,文件与目录管理
文件类型 后面的字符表示文件类型标志 普通文件:-(纯文本文件,二进制文件,数据格式文件) 如文本文件、图片、程序文件等。 目录文件:d(directory) 用来存放其他文件或子目录。 设备…...
Leetcode 3576. Transform Array to All Equal Elements
Leetcode 3576. Transform Array to All Equal Elements 1. 解题思路2. 代码实现 题目链接:3576. Transform Array to All Equal Elements 1. 解题思路 这一题思路上就是分别考察一下是否能将其转化为全1或者全-1数组即可。 至于每一种情况是否可以达到…...
JavaScript 中的 ES|QL:利用 Apache Arrow 工具
作者:来自 Elastic Jeffrey Rengifo 学习如何将 ES|QL 与 JavaScript 的 Apache Arrow 客户端工具一起使用。 想获得 Elastic 认证吗?了解下一期 Elasticsearch Engineer 培训的时间吧! Elasticsearch 拥有众多新功能,助你为自己…...
8k长序列建模,蛋白质语言模型Prot42仅利用目标蛋白序列即可生成高亲和力结合剂
蛋白质结合剂(如抗体、抑制肽)在疾病诊断、成像分析及靶向药物递送等关键场景中发挥着不可替代的作用。传统上,高特异性蛋白质结合剂的开发高度依赖噬菌体展示、定向进化等实验技术,但这类方法普遍面临资源消耗巨大、研发周期冗长…...
蓝牙 BLE 扫描面试题大全(2):进阶面试题与实战演练
前文覆盖了 BLE 扫描的基础概念与经典问题蓝牙 BLE 扫描面试题大全(1):从基础到实战的深度解析-CSDN博客,但实际面试中,企业更关注候选人对复杂场景的应对能力(如多设备并发扫描、低功耗与高发现率的平衡)和前沿技术的…...
学校招生小程序源码介绍
基于ThinkPHPFastAdminUniApp开发的学校招生小程序源码,专为学校招生场景量身打造,功能实用且操作便捷。 从技术架构来看,ThinkPHP提供稳定可靠的后台服务,FastAdmin加速开发流程,UniApp则保障小程序在多端有良好的兼…...
大学生职业发展与就业创业指导教学评价
这里是引用 作为软工2203/2204班的学生,我们非常感谢您在《大学生职业发展与就业创业指导》课程中的悉心教导。这门课程对我们即将面临实习和就业的工科学生来说至关重要,而您认真负责的教学态度,让课程的每一部分都充满了实用价值。 尤其让我…...
pikachu靶场通关笔记22-1 SQL注入05-1-insert注入(报错法)
目录 一、SQL注入 二、insert注入 三、报错型注入 四、updatexml函数 五、源码审计 六、insert渗透实战 1、渗透准备 2、获取数据库名database 3、获取表名table 4、获取列名column 5、获取字段 本系列为通过《pikachu靶场通关笔记》的SQL注入关卡(共10关࿰…...
均衡后的SNRSINR
本文主要摘自参考文献中的前两篇,相关文献中经常会出现MIMO检测后的SINR不过一直没有找到相关数学推到过程,其中文献[1]中给出了相关原理在此仅做记录。 1. 系统模型 复信道模型 n t n_t nt 根发送天线, n r n_r nr 根接收天线的 MIMO 系…...
莫兰迪高级灰总结计划简约商务通用PPT模版
莫兰迪高级灰总结计划简约商务通用PPT模版,莫兰迪调色板清新简约工作汇报PPT模版,莫兰迪时尚风极简设计PPT模版,大学生毕业论文答辩PPT模版,莫兰迪配色总结计划简约商务通用PPT模版,莫兰迪商务汇报PPT模版,…...
