当前位置: 首页 > news >正文

pandas常用数据格式IO性能对比

前言

本文对pandas支持的一些数据格式进行IO(读写)的性能测试,大数据时代以数据为基础,经常会遇到操作大量数据的情景,数据的IO性能尤为重要,本文对常见的数据格式csv、feather、hdf5、jay、parquet、pickle性能进行对比。

csv

CSV(Comma-Separated Values)是一种用于存储表格数据的简单文件格式。在 CSV 文件中,每一行通常代表一条记录,字段(列)由逗号分隔。尽管可以使用其他分隔符(如制表符、分号等),逗号是最常见的分隔符。

import time
import pandas as pdtemplates_path = r'./data.hdf5'
df = pd.read_hdf(templates_path, 'table')t0 = time.time()
df.to_csv("data.csv")
print('csv写时间 ', time.time()-t0)
t1 = time.time()
df2 = pd.read_csv("data.csv")
print('csv读时间 ', time.time()-t1)

测试632MB的hdf5运行结果:
csv写时间 9.340209722518921
csv读时间 5.414996147155762

feather

Feather 是一种高效的列式存储格式,专门用于快速读写数据框(DataFrame)。它是由 Apache Arrow 项目开发的,旨在提高数据处理的速度和效率,特别是在大型数据集的情况下。

import time
import pandas as pdtemplates_path = r'./data.hdf5'
df = pd.read_hdf(templates_path, 'table')t0 = time.time()
df.to_feather("data.feather")
print('feather写时间 ', time.time()-t0)
t1 = time.time()
df2 = pd.read_feather("data.feather")
print('feather读时间 ', time.time()-t1)

测试632MB的hdf5运行结果:
feather写时间 1.2748804092407227
feather读时间 5.084072828292847

hdf5

HDF5(Hierarchical Data Format version 5)是一种用于存储和管理大型、复杂的数据集合的文件格式。

import time
import pandas as pdtemplates_path = r'./data.hdf5'
df = pd.read_hdf(templates_path, 'table')t0 = time.time()
df.to_hdf("data.hdf5", 'table')
print('hdf写时间 ', time.time()-t0)
t1 = time.time()
df2 = pd.read_hdf("data.hdf5", 'table')
print('hdf读时间 ', time.time()-t1)

测试632MB的hdf5运行结果:
hdf写时间 4.227152109146118
hdf读时间 1.985311508178711

jay

Jay 格式(通常称为 Jay Data)是一种具有可扩展性的数据交换格式,主要用于存储和传输数据。

import time
import pandas as pd
import datatable as dt
templates_path = r'./data.hdf5'
df = pd.read_hdf(templates_path, 'table')t0 = time.time()
dt.Frame(df).to_jay("data.jay")
print('jay写时间 ', time.time()-t0)
t1 = time.time()
data_jay = dt.fread("data.jay")
print('jay读时间 ', time.time()-t1)

测试632MB的hdf5运行结果:
jay写时间 1.4829316139221191
jay读时间 0.0009965896606445312

parquet

Parquet 是一种列式存储文件格式,主要用于数据处理和分析场景。它是 Apache Hadoop 生态系统中的一个重要组成部分,设计用来支持高效的数据存储和检索。

import time
import pandas as pdtemplates_path = r'./data.hdf5'
df = pd.read_hdf(templates_path, 'table')t0 = time.time()
df.to_parquet("data.parquet")
print('parquet写时间 ', time.time()-t0)
t1 = time.time()
df2 = pd.read_parquet("data.parquet")
print('parquet读时间 ', time.time()-t1)

测试632MB的hdf5运行结果:
parquet写时间 1.8439412117004395
parquet读时间 5.116466522216797

pickle

pickle 是 Python 的标准库之一,用于序列化(将 Python 对象转换为字节流)和反序列化(将字节流转换回 Python 对象)。

import time
import pandas as pdtemplates_path = r'./data.hdf5'
df = pd.read_hdf(templates_path, 'table')t0 = time.time()
df.to_pickle("data.pickle")
print('pickle写时间 ', time.time()-t0)
t1 = time.time()
df2 = pd.read_pickle("data.pickle")
print('pickle读时间 ', time.time()-t1)

测试632MB的hdf5运行结果:
pickle写时间 3.7283213138580322
pickle读时间 1.2415409088134766

测试结果汇总

格式csvfeatherhdf5jayparquetpickle
632M写9.341.274.221.481.843.72
632M读5.415.081.980.00095.111.24
3.6G写40.587.45*10.059.224.02
3.6G读34.434.43*0.0019 (5.44**)4.823.33
3.6Ghdf5占用空间3.65G0.97G3.6G3.75G1.01G3.05G
  • *数据中包含Long格式数据,无法保存,未能完成测试
  • **数据需要经过处理才能达到原始数据格式,加上处理耗时

总结

本测试基于python语言,对于其他语言可能不适用。

  • 对储存空间要求较高,推荐使用 feather
  • 对读写速度要求较高,推荐使用 pickle

相关文章:

pandas常用数据格式IO性能对比

前言 本文对pandas支持的一些数据格式进行IO(读写)的性能测试,大数据时代以数据为基础,经常会遇到操作大量数据的情景,数据的IO性能尤为重要,本文对常见的数据格式csv、feather、hdf5、jay、parquet、pick…...

【D3.js in Action 3 精译_031】3.5.2 DIY实战:在 Observable 平台实现带数据标签的 D3 条形图并改造单元测试模块

当前内容所在位置(可进入专栏查看其他译好的章节内容) 第一部分 D3.js 基础知识 第一章 D3.js 简介(已完结) 1.1 何为 D3.js?1.2 D3 生态系统——入门须知1.3 数据可视化最佳实践(上)1.3 数据可…...

华为OD机试真题-字符串分割

题目描述: 给定非空字符串s,将该字符串分割成一些子串,使每个子串的ASCII码值的和均为水仙花数。 1、若分割不成功,则返回0。 2、若分割成功且分割结果不唯一,则返回-1。 3、若分割成功且分割结果唯一,则返…...

编程技巧:提高代码健壮性与可维护性的关键方法(以 Shell 为例)

在脚本编写和自动化工作中,良好的编程技巧对于确保代码的健壮性和可维护性至关重要。以下是一些关键的编程技巧,包括模块化设计、单元测试、版本控制、处理边界条件、错误处理、中间值保存和创建 Flag。本文将通过 Shell 脚本示例来阐述这些技巧的应用。 1. 模块化设计 **定…...

【无标题】ReadableStream is not defined

升级 node 版本到 18 及以上即可解决...

【JVM】高级篇

1 GraalVM 1.1 什么是GraalVM GraalVM是Oracle官方推出的一款高性能JDK,使用它享受比OpenJDK或者OracleJDK更好的性能。 GraalVM的官方网址:https://www.graalvm.org/ 官方标语:Build faster, smaller, leaner applications。 更低的CPU…...

nacos1.4源码-服务发现、心跳机制

nacos的服务发现主要采用服务端主动推送客户端定时拉取;心跳机制通过每5s向服务端发送心跳任务来保活,当超过15s服务端未接收到心跳任务时,将该实例设置为非健康状态;当超过30s时,删除该实例。 1.服务发现 nacos主要采…...

C++ 2D平台游戏开发案例

关于2D平台游戏的C开发案例,包括游戏设计、实现细节、图形渲染和音效处理等内容。虽然无法一次性提供3000字,但我会尽量详细描述各个部分,并确保有足够的深度和广度。 2D平台游戏开发案例 一、游戏设计 游戏概述 游戏名称:“冒险…...

【Webpack--019】TreeShaking

🤓😍Sam9029的CSDN博客主页:Sam9029的博客_CSDN博客-前端领域博主 🐱‍🐉若此文你认为写的不错,不要吝啬你的赞扬,求收藏,求评论,求一个大大的赞!👍* &#x…...

Docker基本操作命令

Docker 是一个开源的应用容器引擎,允许开发者打包应用以及其依赖包到一个可移植的容器中,然后发布到任何流行的 Linux 机器上,也可以实现虚拟化。容器是完全使用沙箱机制,相互之间不会有任何接口。主要功能是为开发者提供一个简单…...

开源计算器应用的全面测试计划:确保功能性和可靠性

✅作者简介:2022年博客新星 第八。热爱国学的Java后端开发者,修心和技术同步精进。 🍎个人主页:Java Fans的博客 🍊个人信条:不迁怒,不贰过。小知识,大智慧。 💞当前专栏…...

uni.requestPayment 支付成功之后会走 wx.onAppRoute

uni.requestPayment 是用于发起微信支付的统一接口,而 wx.onAppRoute 是用于监听小程序的路由变化。当 uni.requestPayment 支付成功后,如果发生了页面跳转或者其他路由变化,wx.onAppRoute 会被触发。这个行为是正常的,因为支付成…...

统⼀服务入口 - Gateway

网关介绍 问题 在 spring cloud 体系中我们通过 Eureka,Nacos 解决了服务注册,服务发现的问题,使⽤Spring Cloud LoadBalance解决了负载均衡的问题,使⽤ OpenFeign 解决了远程调⽤的问题. 但是当前所有微服务的接⼝都是直接对外暴露的,可以直接通过外部访问.为了保证对外服务的…...

QGraphicsWidget Class

Header:#include < QGraphicsWidget > qmake:QT += widgets Since:Qt 4.4 Inherits:QGraphicsObject and QGraphicsLayoutItem Inherited By:QGraphicsProxyWidget This class was introduced in Qt 4.4. Public Types enum anonymous {Type }Properties autoFi…...

探讨最好用的AI工具:从日常到创新的应用

文章目录 引言常用AI工具1. 语音助手2. 图像识别软件3. 机器翻译工具4. 智能客服系统 创新AI应用1. 自动驾驶汽车2. 虚拟试衣间3. 医疗影像分析4. 个性化推荐系统 个人体验分享1. 通义灵码2. 文心一言3. 智能写作助手4. 智能家居设备5. DALLE6. Whisper7. Codex8. Gym9. ChatGP…...

Python系统教程005(字符串的格式化输出)

知识回顾 1、默认情况下&#xff0c;input函数接收的数据是字符串类型。 2、字符串类型的关键词是str。 3、\n和\t都是转义字符&#xff0c;\n用来换行&#xff0c;\t用来留出一段固定长度的空白。 4、type函数能够用来查看变量的数据类型 5、数据类型的转换&#xff0c;举…...

六款电脑远程控制软件分享,2024最热门软件合集,总有一款适合你!速来看!

想要随时随地控制自己的电脑&#xff1f; 无论你是办公需求&#xff0c;还是要远程协助他人&#xff0c;一款好用的远程控制软件绝对少不了。 2024年最热门的六款远程控制软件已经为你准备好&#xff0c;总有一款适合你&#xff0c;赶快往下看吧&#xff01; 1. 安企神系统—…...

优质微信群不再难寻!掌握这些技巧就够了!

在当今信息爆炸的时代&#xff0c;微信群已成为人们交流思想、分享知识、建立人脉的重要平台。无论是专业领域的深入探讨&#xff0c;还是兴趣爱好的自由交流&#xff0c;微信群都能为你提供一个即时互动的虚拟空间。然而&#xff0c;面对海量的微信群信息&#xff0c;如何高效…...

python - mysql操作

Python MySQL 操作 1. 背景介绍 常见的Mysql驱动介绍&#xff1a; MySQL-python&#xff1a;也就是MySQLdb。是对C语言操作MySQL数据库的一个简单封装。遵循了Python DB API v2。但是只支持Python2&#xff0c;目前还不支持Python3。mysqlclient&#xff1a;是MySQL-python的…...

基于Springboot+Vue的服装生产管理信息系统设计与实现(含源码数据库)

1.开发环境 开发系统:Windows10/11 架构模式:MVC/前后端分离 JDK版本: Java JDK1.8 开发工具:IDEA 数据库版本: mysql5.7或8.0 数据库可视化工具: navicat 服务器: SpringBoot自带 apache tomcat 主要技术: Java,Springboot,mybatis,mysql,vue 2.视频演示地址 3.功能 在这个…...

龙虎榜——20250610

上证指数放量收阴线&#xff0c;个股多数下跌&#xff0c;盘中受消息影响大幅波动。 深证指数放量收阴线形成顶分型&#xff0c;指数短线有调整的需求&#xff0c;大概需要一两天。 2025年6月10日龙虎榜行业方向分析 1. 金融科技 代表标的&#xff1a;御银股份、雄帝科技 驱动…...

微信小程序之bind和catch

这两个呢&#xff0c;都是绑定事件用的&#xff0c;具体使用有些小区别。 官方文档&#xff1a; 事件冒泡处理不同 bind&#xff1a;绑定的事件会向上冒泡&#xff0c;即触发当前组件的事件后&#xff0c;还会继续触发父组件的相同事件。例如&#xff0c;有一个子视图绑定了b…...

大话软工笔记—需求分析概述

需求分析&#xff0c;就是要对需求调研收集到的资料信息逐个地进行拆分、研究&#xff0c;从大量的不确定“需求”中确定出哪些需求最终要转换为确定的“功能需求”。 需求分析的作用非常重要&#xff0c;后续设计的依据主要来自于需求分析的成果&#xff0c;包括: 项目的目的…...

渲染学进阶内容——模型

最近在写模组的时候发现渲染器里面离不开模型的定义,在渲染的第二篇文章中简单的讲解了一下关于模型部分的内容,其实不管是方块还是方块实体,都离不开模型的内容 🧱 一、CubeListBuilder 功能解析 CubeListBuilder 是 Minecraft Java 版模型系统的核心构建器,用于动态创…...

P3 QT项目----记事本(3.8)

3.8 记事本项目总结 项目源码 1.main.cpp #include "widget.h" #include <QApplication> int main(int argc, char *argv[]) {QApplication a(argc, argv);Widget w;w.show();return a.exec(); } 2.widget.cpp #include "widget.h" #include &q…...

Python爬虫(一):爬虫伪装

一、网站防爬机制概述 在当今互联网环境中&#xff0c;具有一定规模或盈利性质的网站几乎都实施了各种防爬措施。这些措施主要分为两大类&#xff1a; 身份验证机制&#xff1a;直接将未经授权的爬虫阻挡在外反爬技术体系&#xff1a;通过各种技术手段增加爬虫获取数据的难度…...

爬虫基础学习day2

# 爬虫设计领域 工商&#xff1a;企查查、天眼查短视频&#xff1a;抖音、快手、西瓜 ---> 飞瓜电商&#xff1a;京东、淘宝、聚美优品、亚马逊 ---> 分析店铺经营决策标题、排名航空&#xff1a;抓取所有航空公司价格 ---> 去哪儿自媒体&#xff1a;采集自媒体数据进…...

MySQL用户和授权

开放MySQL白名单 可以通过iptables-save命令确认对应客户端ip是否可以访问MySQL服务&#xff1a; test: # iptables-save | grep 3306 -A mp_srv_whitelist -s 172.16.14.102/32 -p tcp -m tcp --dport 3306 -j ACCEPT -A mp_srv_whitelist -s 172.16.4.16/32 -p tcp -m tcp -…...

Web 架构之 CDN 加速原理与落地实践

文章目录 一、思维导图二、正文内容&#xff08;一&#xff09;CDN 基础概念1. 定义2. 组成部分 &#xff08;二&#xff09;CDN 加速原理1. 请求路由2. 内容缓存3. 内容更新 &#xff08;三&#xff09;CDN 落地实践1. 选择 CDN 服务商2. 配置 CDN3. 集成到 Web 架构 &#xf…...

以光量子为例,详解量子获取方式

光量子技术获取量子比特可在室温下进行。该方式有望通过与名为硅光子学&#xff08;silicon photonics&#xff09;的光波导&#xff08;optical waveguide&#xff09;芯片制造技术和光纤等光通信技术相结合来实现量子计算机。量子力学中&#xff0c;光既是波又是粒子。光子本…...