遥感影像-语义分割数据集:sar水体数据集详细介绍及训练样本处理流程
原始数据集详情
简介:该数据集由WHU-OPT-SAR数据集整理而来,覆盖面积51448.56公里,分辨率为5米。据我们所知,WHU-OPT-SAR是第一个也是最大的土地利用分类数据集,它融合了高分辨率光学和SAR图像,并进行了充分的标注。
数据集包含100张5556*3704像素的光学图像和同一地区的SAR图像,覆盖了中国湖北省(北纬30°N-33°,东经108°E-117°)约50000公里的区域。该地区属亚热带季风气候,最低海拔50米,最高海拔3000米。WHU-OPT-SAR覆盖了山脉、林地、丘陵、平原等不同地形和针叶林、阔叶林、灌木和水生植被等不同植被的广泛遥感图像,该数据集中带有像素级注释的图像可以为基于深度学习的土地利用分类提供数据源。
| Key | Value |
|---|---|
| 卫星类型 | 高分三号(GF-3) |
| 覆盖区域 | 山脉、林地、丘陵、平原等不同地形 |
| 场景 | 未知 |
| 分辨率5 | 米 |
| 数量 | 100张 |
| 单张尺寸 | 5556*3704左右 |
| 原始影像位深 | 8位 |
| 标签图片位深 | 8位 |
| 原始影像通道数 | 单通道 |
| 标签图片通道数 | 单通道 |
标签类别对照表
| 像素值 | 类别名(英文) | 类别名(中文) | RGB |
|---|---|---|---|
| 0 | background | 背景 | 0,0,0 |
| 1 | water | 水体 | 255,0,0 |
彩色表添加
大家是否有这样的困惑?真值标签图片的像素值太小,比如1、2、3······,由于像素值太小,导致看上去标签图片全为黑色,无法看出真值标签与影像图片的像素位置是否对应?如果真值标签的像素值间隔太大,又无法直接作为训练样本。
其实有办法可以解决这个问题,那就是在像素值为1、2、3等的图片上添加一个彩色表,添加的彩色表不会改变标签图片的像素值,但是可以由彩色的视觉效果展示,如下图所示:

数据预处理
下面对原始影像及标签进行模型训练前的数据预处理,根据这套数据集的原始信息,根据自己训练模型的图片尺寸大小使用代码批量裁剪原始影像和标签为所需要的尺寸,比如512*512,另外如果需要检查裁剪后的数据是否一一对应,最好给标签数据添加彩色表,这样就可以轻易看出影像和真值标签是否一致了。
最后可以直接用于训练的数据集结构如下所示:
├── train
│ ├── images
│ │ ├── 2522_0_0.tif
│ │ ├── 2522_0_512.tif
│ │ └── ......
│ └── labels
│ ├── 2522_0_0.tif
│ ├── 2522_0_512.tif
│ └── ......
└── val├── images│ ├── 2522_512_512.tif│ ├── 2523_0_0.tif│ └── ......└── labels├── 2522_512_512.tif├── 2523_0_0.tif└── ......
需要本博客相关数据集的小伙伴可私信哦!
01、官方原始数据集;
02、中间处理好的大图数据集;
03、裁剪后可直接训练的小图数据集;
相关文章:
遥感影像-语义分割数据集:sar水体数据集详细介绍及训练样本处理流程
原始数据集详情 简介:该数据集由WHU-OPT-SAR数据集整理而来,覆盖面积51448.56公里,分辨率为5米。据我们所知,WHU-OPT-SAR是第一个也是最大的土地利用分类数据集,它融合了高分辨率光学和SAR图像,并进行了充…...
极狐GitLab 发布安全补丁版本 17.4.1、17.3.4、17.2.8
GitLab 是一个全球知名的一体化 DevOps 平台,很多人都通过私有化部署 GitLab 来进行源代码托管。极狐GitLab 是 GitLab 在中国的发行版,专门为中国程序员服务。可以一键式部署极狐GitLab。 学习极狐GitLab 的相关资料: 极狐GitLab 官网极狐…...
汽车管理系统中使用函数
目录 setupUisetEnabledcurrentText()setTextsetFocus()query.exec(...)addWidgetconnect setupUi setupUi() 是 ui 对象的一个成员函数,它的作用是根据 .ui 文件中的设计,将设计好的组件(如按钮、文本框、布局等)添加到当前的窗…...
大数据分析入门概述
大数据分析入门概述 本文旨在为有意向学习数据分析、数据开发等大数据方向的初学者提供一个学习指南,当然如果你希望通过视频课程的方式快速入门,B站UP主戴戴戴师兄的课程质量很高,并且适合初学者快速入门。本文的目的旨在为想要了解大数据但…...
提示工程、微调和 RAG
自众多大型语言模型(LLM)和高级对话模型发布以来,人们已经运用了各种技术来从这些 AI 系统中提取所需的输出。其中一些方法会改变模型的行为来更好地贴近我们的期望,而另一些方法则侧重于增强我们查询 LLM 的方式,以提…...
自动化测试中如何高效进行元素定位!
前言 在自动化测试中,元素定位是一项非常重要的工作。良好的元素定位可以帮助测试人员处理大量的测试用例,加快测试进度,降低工作负担。但是在实际的测试工作中,我们常常遇到各种各样的定位问题,比如元素定位失败、元…...
UE5数字人制作平台使用及3D模型生成
第10章 数字人制作平台使用及3D模型生成 在数字娱乐、虚拟现实(VR)、增强现实(AR)等领域,高质量的3D模型是数字内容创作的核心。本章将引导你了解如何使用UE5(Unreal Engine 5)虚幻引擎这一强大…...
Linux进程被占用如何杀死进程
文章目录 前言一、根据名称进行查找程序所占用的端口号二、杀死进程总结 前言 由于Linux中,校园网登录的时候容易出现端口被占用,如何快速查找程序所占用的端口号。 提示:以下是本篇文章正文内容,下面案例可供参考 一、根据名称…...
详解Xilinx JESD204B PHY层端口信号含义及动态切换线速率(JESD204B五)
点击进入高速收发器系列文章导航界面 Xilinx官方提供了两个用于开发JESD204B的IP,其中一个完成PHY层设计,另一个完成传输层的逻辑,两个IP必须一起使用才能正常工作。 7系列FPGA只能使用最多12通道的JESD204B协议,线速率为1.0至12.…...
Java面试——场景题
1.如何分批处理数据? 1.使用LIMIT和OFFSET子句: 这是最常用的分批查询方法。例如,你可以使用以下SQL语句来分批查询数据: SELECT * FROM your_table LIMIT 1000 OFFSET 0; 分批查询到的数据在后端进行处理,达到分批…...
xss-labs靶场第一关测试报告
目录 一、测试环境 1、系统环境 2、使用工具/软件 二、测试目的 三、操作过程 1、注入点寻找 2、使用hackbar进行payload测试 3、绕过结果 四、源代码分析 五、结论 一、测试环境 1、系统环境 渗透机:本机(127.0.0.1) 靶 机:本机(127.0.0.…...
微软PowerBI认证!数据分析师入门级证书备考攻略来啦
#微软PowerBI认证!数据分析师入门级证书! 😃Power BI是一种强大的数据可视化和分析工具,学习Power BI,能提高数据的分析能力,将数据转化为有意义的见解,并支持数据驱动的决策制定。 ㅤ ✨微软P…...
上海AI Lab视频生成大模型书生.筑梦环境搭建推理测试
引子 最近视频生成大模型层出不穷,上海AI Lab推出新一代视频生成大模型 “书生・筑梦 2.0”(Vchitect 2.0)。根据官方介绍,书生・筑梦 2.0 是集文生视频、图生视频、插帧超分、训练系统一体化的视频生成大模型。OK,那就让我们开始吧。 一、模…...
3D看车如何实现?有哪些功能特点和优势?
3D看车是一种创新的汽车展示方式,它利用三维建模和虚拟现实技术,将汽车以更真实、更立体的形式呈现在消费者面前。 一、3D看车的实现方式 1、三维建模: 通过三维建模技术,按照1:1的比例还原汽车外观,包括车身线条、细…...
Pytorch中不会自动传播梯度的操作有哪些?
在 PyTorch 中,某些生成张量的操作本身不会创建与计算图相关联的梯度信息。这些操作通常用于初始化张量,并且默认情况下不需要进行梯度计算。以下是一些常见的不会自动传播梯度的张量生成操作: 数值初始化操作: torch.linspace():…...
【设计模式】软件设计原则——开闭原则里氏替换单一职责
开闭原则内容引出 开闭原则 定义:一个软件实体,类,函数,模块;对扩展开放,对修改关闭。用抽象构建框架,用实现扩展细节。可以提高软件的可复用性和可维护性。 开发新功能时,尽量不修…...
项目完整开发的流程
流程 1.设计产品 2.写需求文档 2.1需求分析,后端设计数据库,建表,客户沟通,说完签字,留证据,防止后面扯皮,和防止后续变需求重新写业务 3.画原型图,也就是草图,初始的…...
性能测试学习6:jmeter安装与基本配置/元件/线程组介绍
一.JDK安装 官网:https://www.oracle.com/ 二.Jmeter安装 官网:http://jmeter.apache.org/download_jmeter.cgi 下载zip包,zip后缀那个才是Windows系统的jmeter 三.Jmeter工作目录介绍 四.Jmeter功能 1)修改默认配置-汉化 2&am…...
大数据ETL数据提取转换和加载处理
什么是 ETL? 提取转换加载(英语:Extract, transform, load,简称ETL),用来描述将资料从来源端经过抽取、转置、加载至目的端的过程。ETL一词较常用在数据仓库,但其对象并不限于数据仓库。 ETL&…...
物理与环境安全技术
目录 物理安全 环境安全 物理安全 物理安全是指通过实施一系列的防护措施,以保护人员、设备、设施和信息资源免受物理上的威胁、损坏或非法入侵。 访问控制:限制对数据中心、机房等关键设施的物理访问。通常采用的措施有门禁系统(使用门禁…...
【杂谈】-递归进化:人工智能的自我改进与监管挑战
递归进化:人工智能的自我改进与监管挑战 文章目录 递归进化:人工智能的自我改进与监管挑战1、自我改进型人工智能的崛起2、人工智能如何挑战人类监管?3、确保人工智能受控的策略4、人类在人工智能发展中的角色5、平衡自主性与控制力6、总结与…...
Linux 文件类型,目录与路径,文件与目录管理
文件类型 后面的字符表示文件类型标志 普通文件:-(纯文本文件,二进制文件,数据格式文件) 如文本文件、图片、程序文件等。 目录文件:d(directory) 用来存放其他文件或子目录。 设备…...
AI Agent与Agentic AI:原理、应用、挑战与未来展望
文章目录 一、引言二、AI Agent与Agentic AI的兴起2.1 技术契机与生态成熟2.2 Agent的定义与特征2.3 Agent的发展历程 三、AI Agent的核心技术栈解密3.1 感知模块代码示例:使用Python和OpenCV进行图像识别 3.2 认知与决策模块代码示例:使用OpenAI GPT-3进…...
JavaScript 中的 ES|QL:利用 Apache Arrow 工具
作者:来自 Elastic Jeffrey Rengifo 学习如何将 ES|QL 与 JavaScript 的 Apache Arrow 客户端工具一起使用。 想获得 Elastic 认证吗?了解下一期 Elasticsearch Engineer 培训的时间吧! Elasticsearch 拥有众多新功能,助你为自己…...
【论文阅读28】-CNN-BiLSTM-Attention-(2024)
本文把滑坡位移序列拆开、筛优质因子,再用 CNN-BiLSTM-Attention 来动态预测每个子序列,最后重构出总位移,预测效果超越传统模型。 文章目录 1 引言2 方法2.1 位移时间序列加性模型2.2 变分模态分解 (VMD) 具体步骤2.3.1 样本熵(S…...
vue3+vite项目中使用.env文件环境变量方法
vue3vite项目中使用.env文件环境变量方法 .env文件作用命名规则常用的配置项示例使用方法注意事项在vite.config.js文件中读取环境变量方法 .env文件作用 .env 文件用于定义环境变量,这些变量可以在项目中通过 import.meta.env 进行访问。Vite 会自动加载这些环境变…...
论文笔记——相干体技术在裂缝预测中的应用研究
目录 相关地震知识补充地震数据的认识地震几何属性 相干体算法定义基本原理第一代相干体技术:基于互相关的相干体技术(Correlation)第二代相干体技术:基于相似的相干体技术(Semblance)基于多道相似的相干体…...
GitFlow 工作模式(详解)
今天再学项目的过程中遇到使用gitflow模式管理代码,因此进行学习并且发布关于gitflow的一些思考 Git与GitFlow模式 我们在写代码的时候通常会进行网上保存,无论是github还是gittee,都是一种基于git去保存代码的形式,这样保存代码…...
【JavaSE】多线程基础学习笔记
多线程基础 -线程相关概念 程序(Program) 是为完成特定任务、用某种语言编写的一组指令的集合简单的说:就是我们写的代码 进程 进程是指运行中的程序,比如我们使用QQ,就启动了一个进程,操作系统就会为该进程分配内存…...
Webpack性能优化:构建速度与体积优化策略
一、构建速度优化 1、升级Webpack和Node.js 优化效果:Webpack 4比Webpack 3构建时间降低60%-98%。原因: V8引擎优化(for of替代forEach、Map/Set替代Object)。默认使用更快的md4哈希算法。AST直接从Loa…...
