当前位置: 首页 > news >正文

Apache Linkis + OceanBase:如何提升数据分析效率

计算中间件 Apache Linkis 构建了一个计算中间件层,以实现上层应用程序和底层数据引擎之间的连接、治理和编排。目前,已经支持通过数据源的功能,实现用户通过Linkis 对接并使用 OceanBase数据库。

本文详细阐述了在 Apache Linkis v1.3.2中,如何集成OceanBase数据库。鉴于OceanBase数据库兼容MySQL 5.7/8.0的众多功能与语法特性,用户在实际操作中可将OceanBase 当做 MySQL来类似应用。

1、  准备工作

1.1 环境安装

安装和部署OceanBase数据库,请参阅

  • 部署文档(https://www.oceanbase.com/docs/common-oceanbase-database-cn-10000000001687861)
  • 一文讲透|如何部署OceanBase社区版(https://open.oceanbase.com/blog/2235967744)

1.2 环境验证

你可以使用MySQL命令来验证OceanBase数据库的安装情况。

mysql -h${ip} -P${port} -u${username} -p${password} -D${db_name}

连接成功,如下图所示:

1685516605

2. Linkis提交执行OceanBase数据库任务

2.1通过linkis-cli提交

sh ./bin/linkis-cli -engineType jdbc-4 -codeType jdbc -code "show tables" -submitUser hadoop -proxyUser hadoop -runtimeMap wds.linkis.jdbc.connect.url=jdbc:mysql://${ip} :${port}/${db_name} -runtimeMap wds.linkis.jdbc.driver=com.mysql.jdbc.Driver -runtimeMap wds.linkis.jdbc.username=${username} -runtimeMap wds.linkis.jdbc.password =${password}

2.2通过Linkis Java SDK提交任务

Linkis提供Java和Scala的SDK,用于向Linkis服务器提交任务。有关详细信息,请参阅JAVA SDK Manual,对于OceanBase任务,用户只需要在Demo中修改EngineConnType和CodeType参数:

 
Map<String, Object> labels = new HashMap<String, Object>(); 
labels.put (LabelKeyConstant.ENGINE_TYPE_KEY, "jdbc-4"); // required engineType Label
labels.put(LabelKeyConstant.USER_CREATOR_TYPE_KEY, "hadoop-IDE");// required execute user and creator 
labels.put(LabelKeyConstant.CODE_TYPE_KEY, "jdbc"); // required codeType

2.3多数据源支持

路径:登录管理平台-->数据源管理

第一步:创建新的数据源。

1685516783

1685516821

第二步:连接测试。

单击测试连接按钮进行测试

1685516832

第三步:发布数据源。

1685516863

1685516869

第四步:通过指定数据源名称提交OceanBase任务。

请求URL:http://${gateway_url}:${port}/api/rest_j/v1/entrance/submit

方法:POST

请求参数:

{"executionContent": {"code": "show databases","runType": "jdbc"},"params": {"variable": {},"configuration": {"startup": {},"runtime": {"wds.linkis.engine.runtime.datasource": "ob-test"}}},"labels": {"engineType": "jdbc-4"}
}
回应:
{"method": "/api/entrance/submit","status": 0,"message": "OK","data": {"taskID": 93,"execID": "exec_id018017linkis-cg-entrance000830fb1364:9104IDE_hadoop_jdbc_0"}
}

1685516924

Linkis作为中间计算层,使各个上层应用以紧耦合的方式直接连接和访问各种底层引擎如OceanBase、MySQL等。实现了统一变量等用户资源的互通,脚本、UDF、函数和资源文件,并通过REST标准接口提供数据源和元数据管理服务。

1685517259

Linkis 强大的连接、重用、编排、扩展和治理能力,通过应用层和引擎层的解耦,以标准化可重用的方式解决了扩展难、应用孤岛、重复造轮子等复杂的连接问题。简化了复杂的网络调用关系,从而降低了整体的复杂度,也节省了开发和维护成本。

未来, Linkis计划进一步和OceanBase进行集成,包括Linkis ETL功能支持OceanBase,完成OceanBase和其他数据源的导入导出等,并支持将Linkis的元数据存储到OceanBase。另外,期待更多伙伴加入OceanBase生态共建阵营,我们将向合作伙伴分享开源及公有云的商业机会,欢迎合作!

相关文章:

Apache Linkis + OceanBase:如何提升数据分析效率

计算中间件 Apache Linkis 构建了一个计算中间件层&#xff0c;以实现上层应用程序和底层数据引擎之间的连接、治理和编排。目前&#xff0c;已经支持通过数据源的功能&#xff0c;实现用户通过Linkis 对接并使用 OceanBase数据库。 本文详细阐述了在 Apache Linkis v1.3.2中&a…...

Day01-postgresql数据库基础入门培训

Day01-postgresql数据库基础入门培训 1、PostgresQL数据库简介2、PostgreSQL行业生态应用3、PostgreSQL版本发展与特性4、PostgreSQL体系结构介绍5、PostgreSQL与MySQL的区别6、PostgreSQL与Oracle、MySQL的对比 1、PostgresQL数据库简介 PostgreSQL【简称&#xff1a;PG】是加…...

打卡第四天 P1081 [NOIP2012 提高组] 开车旅行

今天是我打卡第四天&#xff0c;做个省选/NOI−题吧(#^.^#) 原题链接&#xff1a;[NOIP2012 提高组] 开车旅行 - 洛谷 题目描述 输入格式 输出格式 输入输出样例 输入 #1 4 2 3 1 4 3 4 1 3 2 3 3 3 4 3 输出 #1 1 1 1 2 0 0 0 0 0 输入 #2 10 4 5 6 1 …...

Jenkins Pipline流水线

提到 CI 工具&#xff0c;首先想到的就是“CI 界”的大佬--]enkjns,虽然在云原生爆发的年代,蹦出来了很多云原生的 CI 工具,但是都不足以撼动 Jenkins 的地位。在企业中对于持续集成、持续部署的需求非常多,并且也会经常有-些比较复杂的需求,此时新生的 CI 工具不足以支撑这些很…...

鸿蒙harmonyos next flutter混合开发之开发FFI plugin

创建FFI plugin summation&#xff0c;默认创建的FFI plugin是求两个数的和 flutter create --templateplugin_ffi summation --platformsandroid,ios,ohos 创建my_application flutter create --org com.example my_application 在my_application项目中文件pubspec.yaml引…...

oracle数据库安装和配置

Oracle数据库安装 一、安装前的准备 系统要求&#xff1a; 硬件&#xff1a;内存至少1GB&#xff08;推荐2GB以上&#xff09;&#xff0c;硬盘至少10GB的可用空间&#xff0c;CPU至少2核心。 操作系统&#xff1a;支持Oracle版本的Windows&#xff08;如Windows 10或更高版本…...

猫玖破密啦

题目&#xff1a; 终究还是猫哥:3d5a3a0cfff7fb2e29194c0b7a89f284ff19a8 玖离&#xff1a;收到消息Oh,what_is_the_flag 玖离:7468655f666c61675f69735f666c13556d2cf2faec1e2d0f330b7dcceea1c62cb2 终究还是猫哥&#xff1a;收到消息************************************ 已…...

SpringBoot框架:服装生产管理的现代化工具

摘 要 本协力服装厂服装生产管理系统设计目标是实现协力服装厂服装生产的信息化管理&#xff0c;提高管理效率&#xff0c;使得协力服装厂服装生产管理作规范化、科学化、高效化。 本文重点阐述了协力服装厂服装生产管理系统的开发过程&#xff0c;以实际运用为开发背景&#…...

Android Preference的使用以及解析

简单使用 values.arrays.xml <?xml version"1.0" encoding"utf-8"?> <resources><string-array name"list_entries"><item>Option 1</item><item>Option 2</item><item>Option 3</item&…...

HCIP——GRE和MGRE

目录 VPN GRE GRE环境的搭建 GRE的报文结构 GRE封装和解封装报文的过程 GRE配置​编辑 R1 R2 GRE实验​​​​​​​​编辑 MGRE 原理 MGRE的配置 R1 R2 R3 R4 查看映射表 抓包 MGRE环境下的RIP网络 综合练习​编辑 VPN 说到GRE&#xff0c;我们先来说个大…...

微信小程序——音乐播放器

一、界面设计 播放页面&#xff1a; 显示当前播放歌曲的封面图片、歌曲名称、歌手名称。有播放 / 暂停按钮、上一首、下一首按钮。进度条显示播放进度&#xff0c;可以拖动进度条调整播放位置。音量调节滑块。 歌曲列表页面&#xff1a; 展示歌曲列表&#xff0c;包括歌曲名称、…...

OceanBase 4.x 部署实践:如何从单机扩展至分布式部署

OceanBase 4.x 版本支持2种部署模式&#xff1a;单机部署与分布式部署&#xff0c;同时支持从单机平滑扩展至分布式架构。这样&#xff0c;可以有效解决小型业务向大型业务转型时面临的扩展难题&#xff0c;降低了机器资源的成本。 以下将详述如何通过命令行&#xff0c;实现集…...

大数据新视界 --大数据大厂之TeZ 大数据计算框架实战:高效处理大规模数据

&#x1f496;&#x1f496;&#x1f496;亲爱的朋友们&#xff0c;热烈欢迎你们来到 青云交的博客&#xff01;能与你们在此邂逅&#xff0c;我满心欢喜&#xff0c;深感无比荣幸。在这个瞬息万变的时代&#xff0c;我们每个人都在苦苦追寻一处能让心灵安然栖息的港湾。而 我的…...

docker详解介绍+基础操作 (三)

1.docker 存储引擎 Overlay&#xff1a; 一种Union FS文件系统&#xff0c;Linux 内核3.18后支持 Overlay2&#xff1a;Overlay的升级版&#xff0c;docker的默认存储引擎&#xff0c;需要磁盘分区支持d-type功能&#xff0c;因此需要系统磁盘的额外支持。 关于 d-type 传送…...

【大语言模型-论文精读】谷歌-BERT:用于语言理解的预训练深度双向Transformers

【大语言模型-论文精读】谷歌-BERT&#xff1a;用于语言理解的预训练深度双向Transformers 目录 文章目录 【大语言模型-论文精读】谷歌-BERT&#xff1a;用于语言理解的预训练深度双向Transformers目录0. 引言1. 简介2 相关工作2.1 基于特征的无监督方法2.2 无监督微调方法2.3…...

【Java】集合中单列集合详解(一):Collection与List

目录 引言 一、Collection接口 1.1 主要方法 1.1.1 添加元素 1.1.2 删除元素 1.1.3 清空元素 1.1.4 判断元素是否存在 1.1.5 判断是否为空 1.1.6 求取元素个数 1.2 遍历方法 1.2.1 迭代器遍历 1.2.2 增强for遍历 1.2.3 Lambda表达式遍历 1.2.4 应用场景 二、…...

【Fine-Tuning】大模型微调理论及方法, PytorchHuggingFace微调实战

Fine-Tuning: 大模型微调理论及方法, Pytorch&HuggingFace微调实战 文章目录 Fine-Tuning: 大模型微调理论及方法, Pytorch&HuggingFace微调实战1. 什么是微调(1) 为什么要进行微调(2) 经典简单例子&#xff1a;情感分析任务背景微调 (3) 为什么微调work, 理论解释下 2…...

清华系“仓颉”来袭:图形起源:用AI颠覆字体设计,推动大模型商业化落地

大模型如何落地&#xff1f;又该如何实现商业化&#xff1f;这一议题已成为今年科技领域的焦点话题。 在一个鲜为人知的字体设计赛道上&#xff0c;清华创业公司“图形起源”悄然实现了商业变现&#xff1a;他们帮助字体公司将成本降低了80%&#xff0c;生产速度提升了10倍以上…...

分布式一致性协议的深度解析:Paxos与Raft

分布式系统的复杂性源于节点失效、网络分区、消息丢失等诸多不确定性。在这种背景下&#xff0c;分布式一致性问题应运而生&#xff0c;成为解决这些问题的核心。本文将从理论到实践&#xff0c;深入探讨两种经典的一致性协议&#xff1a;Paxos与Raft。文章适合有一定分布式系统…...

ai写作,五款软件助你快速写作!

在这个信息爆炸的时代&#xff0c;内容创作成为了连接用户、传递价值的桥梁。然而&#xff0c;面对日益增长的创作需求&#xff0c;如何在保证质量的同时提升效率&#xff0c;成为了每位创作者面临的难题。幸运的是&#xff0c;随着人工智能技术的飞速发展&#xff0c;AI写作软…...

JVM垃圾回收机制全解析

Java虚拟机&#xff08;JVM&#xff09;中的垃圾收集器&#xff08;Garbage Collector&#xff0c;简称GC&#xff09;是用于自动管理内存的机制。它负责识别和清除不再被程序使用的对象&#xff0c;从而释放内存空间&#xff0c;避免内存泄漏和内存溢出等问题。垃圾收集器在Ja…...

屋顶变身“发电站” ,中天合创屋面分布式光伏发电项目顺利并网!

5月28日&#xff0c;中天合创屋面分布式光伏发电项目顺利并网发电&#xff0c;该项目位于内蒙古自治区鄂尔多斯市乌审旗&#xff0c;项目利用中天合创聚乙烯、聚丙烯仓库屋面作为场地建设光伏电站&#xff0c;总装机容量为9.96MWp。 项目投运后&#xff0c;每年可节约标煤3670…...

如何在最短时间内提升打ctf(web)的水平?

刚刚刷完2遍 bugku 的 web 题&#xff0c;前来答题。 每个人对刷题理解是不同&#xff0c;有的人是看了writeup就等于刷了&#xff0c;有的人是收藏了writeup就等于刷了&#xff0c;有的人是跟着writeup做了一遍就等于刷了&#xff0c;还有的人是独立思考做了一遍就等于刷了。…...

Maven 概述、安装、配置、仓库、私服详解

目录 1、Maven 概述 1.1 Maven 的定义 1.2 Maven 解决的问题 1.3 Maven 的核心特性与优势 2、Maven 安装 2.1 下载 Maven 2.2 安装配置 Maven 2.3 测试安装 2.4 修改 Maven 本地仓库的默认路径 3、Maven 配置 3.1 配置本地仓库 3.2 配置 JDK 3.3 IDEA 配置本地 Ma…...

2023赣州旅游投资集团

单选题 1.“不登高山&#xff0c;不知天之高也&#xff1b;不临深溪&#xff0c;不知地之厚也。”这句话说明_____。 A、人的意识具有创造性 B、人的认识是独立于实践之外的 C、实践在认识过程中具有决定作用 D、人的一切知识都是从直接经验中获得的 参考答案: C 本题解…...

并发编程 - go版

1.并发编程基础概念 进程和线程 A. 进程是程序在操作系统中的一次执行过程&#xff0c;系统进行资源分配和调度的一个独立单位。B. 线程是进程的一个执行实体,是CPU调度和分派的基本单位,它是比进程更小的能独立运行的基本单位。C.一个进程可以创建和撤销多个线程;同一个进程中…...

Vite中定义@软链接

在webpack中可以直接通过符号表示src路径&#xff0c;但是vite中默认不可以。 如何实现&#xff1a; vite中提供了resolve.alias&#xff1a;通过别名在指向一个具体的路径 在vite.config.js中 import { join } from pathexport default defineConfig({plugins: [vue()],//…...

Web后端基础(基础知识)

BS架构&#xff1a;Browser/Server&#xff0c;浏览器/服务器架构模式。客户端只需要浏览器&#xff0c;应用程序的逻辑和数据都存储在服务端。 优点&#xff1a;维护方便缺点&#xff1a;体验一般 CS架构&#xff1a;Client/Server&#xff0c;客户端/服务器架构模式。需要单独…...

深入浅出Diffusion模型:从原理到实践的全方位教程

I. 引言&#xff1a;生成式AI的黎明 – Diffusion模型是什么&#xff1f; 近年来&#xff0c;生成式人工智能&#xff08;Generative AI&#xff09;领域取得了爆炸性的进展&#xff0c;模型能够根据简单的文本提示创作出逼真的图像、连贯的文本&#xff0c;乃至更多令人惊叹的…...

人工智能 - 在Dify、Coze、n8n、FastGPT和RAGFlow之间做出技术选型

在Dify、Coze、n8n、FastGPT和RAGFlow之间做出技术选型。这些平台各有侧重&#xff0c;适用场景差异显著。下面我将从核心功能定位、典型应用场景、真实体验痛点、选型决策关键点进行拆解&#xff0c;并提供具体场景下的推荐方案。 一、核心功能定位速览 平台核心定位技术栈亮…...