PCL 3D-SIFT关键点检测(Z方向梯度约束
目录
一、概述
1.1原理
1.2实现步骤
1.3应用场景
二、代码实现
2.1关键函数
2.1.1 SIFT关键点检测
2.1.2 可视化函数
2.2完整代码
三、实现效果
PCL点云算法汇总及实战案例汇总的目录地址链接:
PCL点云算法与项目实战案例汇总(长期更新)
一、概述
3D-SIFT关键点检测是SIFT算法在三维点云中的扩展应用。与二维图像的SIFT类似,它通过尺度空间的构建和局部特征检测来提取点云的关键点。在三维点云中,SIFT可以通过计算每个点在Z方向的梯度,找到具有几何显著特征的关键点,适用于物体识别、特征匹配、点云配准等应用场景。
1.1原理
SIFT(Scale-Invariant Feature Transform)算法通过建立图像的尺度空间来提取关键点。在三维点云中,我们可以通过分析Z轴方向的变化(梯度)来检测点云的关键点。其核心步骤包括:
- 尺度空间构建:通过不同尺度的高斯核卷积,构造尺度空间,使得算法能够在不同的尺度下检测关键点。最小尺度通过参数 min_scale 设置,尺度空间的层数和每个层次的尺度数量由 n_octaves 和 n_scales_per_octave 控制。
- 关键点检测:通过对尺度空间的极值点检测来提取关键点,极值点通过比较邻域点在不同尺度下的响应得到。为了减少检测到的无效点,需要设置最小对比度 min_contrast,以过滤掉噪声。
- 梯度估计:利用Z方向的变化,估计点云中每个点的局部梯度,作为响应值。Z轴梯度用于构建响应函数,并检测局部极值。
参数解释
- min_scale:最小尺度,控制高斯核的最小标准差。
- n_octaves:尺度空间的层数。
- n_scales_per_octave:每个层次的尺度数量。
- min_contrast:最小对比度,用于过滤掉低响应值的点。
1.2实现步骤
- 加载点云数据。
- 初始化SIFT关键点提取器,设置所需的参数(如尺度、对比度等)。
- 通过SIFT算法提取点云中的关键点,并将结果转换为标准的XYZ点云格式。
- 可视化原始点云和提取的SIFT关键点。
1.3应用场景
- 三维物体识别:通过SIFT提取点云的关键点进行特征匹配和物体识别。
- 点云配准:利用关键点信息对不同视角的点云进行精确对齐。
- 特征提取:用于三维重建、机器人导航等领域中的特征提取和环境感知。
二、代码实现
2.1关键函数
2.1.1 SIFT关键点检测
void extractSIFTKeypoints(pcl::PointCloud<pcl::PointXYZ>::Ptr cloud, pcl::PointCloud<pcl::PointWithScale>::Ptr keypoints)
{// 设置SIFT算法参数const float min_scale = 0.001f; // 设置尺度空间中最小尺度的标准偏差 const int n_octaves = 3; // 设置尺度空间层数,越小则特征点越多 const int n_scales_per_octave = 15; // 设置尺度空间中计算的尺度个数const float min_contrast = 0.0001f; // 设置限制关键点检测的阈值 // 创建SIFT关键点检测对象pcl::SIFTKeypoint<pcl::PointXYZ, pcl::PointWithScale> sift;sift.setInputCloud(cloud); // 设置输入点云pcl::search::KdTree<pcl::PointXYZ>::Ptr tree(new pcl::search::KdTree<pcl::PointXYZ> ());sift.setSearchMethod(tree); // 设置KdTree搜索sift.setScales(min_scale, n_octaves, n_scales_per_octave); // 设置尺度范围sift.setMinimumContrast(min_contrast); // 设置最小对比度// 执行SIFT关键点检测sift.compute(*keypoints);
}
2.1.2 可视化函数
void visualizeSIFTKeypoints(pcl::PointCloud<pcl::PointXYZ>::Ptr cloud, pcl::PointCloud<pcl::PointXYZ>::Ptr keypoints)
{boost::shared_ptr<pcl::visualization::PCLVisualizer> viewer(new pcl::visualization::PCLVisualizer("SIFT Keypoints Viewer"));int v1(0), v2(0);viewer->createViewPort(0, 0.0, 0.5, 1.0, v1);viewer->setBackgroundColor(1.0, 1.0, 1.0, v1); // 设置白色背景viewer->addText("Original Point Cloud", 10, 10, "v1_text", v1);viewer->createViewPort(0.5, 0.0, 1.0, 1.0, v2);viewer->setBackgroundColor(0.98, 0.98, 0.98, v2); // 设置灰色背景viewer->addText("SIFT Keypoints", 10, 10, "v2_text", v2);// 原始点云显示为绿色pcl::visualization::PointCloudColorHandlerCustom<pcl::PointXYZ> original_color(cloud, 0, 255, 0);viewer->addPointCloud(cloud, original_color, "original_cloud", v1);// 关键点显示为红色pcl::visualization::PointCloudColorHandlerCustom<pcl::PointXYZ> keypoints_color(keypoints, 255, 0, 0);viewer->addPointCloud(keypoints, keypoints_color, "keypoints_cloud", v2);// 设置点大小viewer->setPointCloudRenderingProperties(pcl::visualization::PCL_VISUALIZER_POINT_SIZE, 5, "keypoints_cloud");// 添加坐标系viewer->addCoordinateSystem(1.0);while (!viewer->wasStopped()){viewer->spinOnce(100);boost::this_thread::sleep(boost::posix_time::microseconds(100000));}
}
2.2完整代码
#include <iostream>
#include <pcl/io/pcd_io.h>
#include <pcl/point_types.h>
#include <pcl/keypoints/sift_keypoint.h>
#include <pcl/visualization/pcl_visualizer.h>
#include <pcl/common/time.h>
#include <boost/thread/thread.hpp>// 基于Z梯度估计3D点云的SIFT关键点
namespace pcl
{template<>struct SIFTKeypointFieldSelector<PointXYZ>{inline floatoperator () (const PointXYZ& p) const{return p.z;}};
}// 提取SIFT关键点
void extractSIFTKeypoints(pcl::PointCloud<pcl::PointXYZ>::Ptr cloud, pcl::PointCloud<pcl::PointWithScale>::Ptr keypoints)
{const float min_scale = 0.001f; // 设置尺度空间中最小尺度的标准偏差 const int n_octaves = 3; // 设置尺度空间层数,越小则特征点越多 const int n_scales_per_octave = 15; // 设置尺度空间中计算的尺度个数const float min_contrast = 0.0001f; // 设置限制关键点检测的阈值 // 创建SIFT关键点检测对象pcl::SIFTKeypoint<pcl::PointXYZ, pcl::PointWithScale> sift;sift.setInputCloud(cloud); // 设置输入点云pcl::search::KdTree<pcl::PointXYZ>::Ptr tree(new pcl::search::KdTree<pcl::PointXYZ>());sift.setSearchMethod(tree); // 设置KdTree搜索sift.setScales(min_scale, n_octaves, n_scales_per_octave); // 设置尺度范围sift.setMinimumContrast(min_contrast); // 设置最小对比度// 执行SIFT关键点检测sift.compute(*keypoints);
}// 可视化SIFT关键点
void visualizeSIFTKeypoints(pcl::PointCloud<pcl::PointXYZ>::Ptr cloud, pcl::PointCloud<pcl::PointXYZ>::Ptr keypoints)
{boost::shared_ptr<pcl::visualization::PCLVisualizer> viewer(new pcl::visualization::PCLVisualizer("SIFT Keypoints Viewer"));int v1(0), v2(0);viewer->createViewPort(0, 0.0, 0.5, 1.0, v1);viewer->setBackgroundColor(1.0, 1.0, 1.0, v1); // 设置白色背景viewer->addText("Original Point Cloud", 10, 10, "v1_text", v1);viewer->createViewPort(0.5, 0.0, 1.0, 1.0, v2);viewer->setBackgroundColor(0.98, 0.98, 0.98, v2); // 设置灰色背景viewer->addText("SIFT Keypoints", 10, 10, "v2_text", v2);// 原始点云显示为绿色pcl::visualization::PointCloudColorHandlerCustom<pcl::PointXYZ> original_color(cloud, 0, 255, 0);viewer->addPointCloud(cloud, original_color, "original_cloud", v1);// 关键点显示为红色pcl::visualization::PointCloudColorHandlerCustom<pcl::PointXYZ> keypoints_color(keypoints, 255, 0, 0);viewer->addPointCloud(keypoints, keypoints_color, "keypoints_cloud", v2);// 设置点大小viewer->setPointCloudRenderingProperties(pcl::visualization::PCL_VISUALIZER_POINT_SIZE, 3, "keypoints_cloud");// 添加坐标系viewer->addCoordinateSystem(0.1);while (!viewer->wasStopped()){viewer->spinOnce(100);boost::this_thread::sleep(boost::posix_time::microseconds(100000));}
}int main(int argc, char* argv[])
{pcl::StopWatch watch; // 计时器pcl::PointCloud<pcl::PointXYZ>::Ptr cloud_xyz(new pcl::PointCloud<pcl::PointXYZ>);pcl::io::loadPCDFile("bunny.pcd", *cloud_xyz);// 提取SIFT关键点pcl::PointCloud<pcl::PointWithScale>::Ptr sift_keypoints(new pcl::PointCloud<pcl::PointWithScale>);extractSIFTKeypoints(cloud_xyz, sift_keypoints);// 将SIFT关键点转换为标准XYZ格式pcl::PointCloud<pcl::PointXYZ>::Ptr cloud_temp(new pcl::PointCloud<pcl::PointXYZ>);pcl::copyPointCloud(*sift_keypoints, *cloud_temp);std::cout << "Extracted " << sift_keypoints->size() << " keypoints" << std::endl;std::cout << "SIFT关键点提取用时: " << watch.getTimeSeconds() << "秒" << std::endl;// 可视化输入点云和SIFT关键点visualizeSIFTKeypoints(cloud_xyz, cloud_temp);return 0;
}
三、实现效果
相关文章:

PCL 3D-SIFT关键点检测(Z方向梯度约束
目录 一、概述 1.1原理 1.2实现步骤 1.3应用场景 二、代码实现 2.1关键函数 2.1.1 SIFT关键点检测 2.1.2 可视化函数 2.2完整代码 三、实现效果 PCL点云算法汇总及实战案例汇总的目录地址链接: PCL点云算法与项目实战案例汇总(长期更新&#…...

肺结节分割与提取系统(基于传统图像处理方法)
Matlab肺结节分割(肺结节提取)源程序,GUI人机界面版本。使用传统图像分割方法,非深度学习方法。使用LIDC-IDRI数据集。 工作如下: 1、读取图像。读取原始dicom格式的CT图像,并显示,绘制灰度直方图; 2、图像…...

ESP32 COAP 客户端观察者模式下,GET服务器的例程
目录 环境准备 示例代码 代码解释 初始化: CoAP 上下文和会话: 注册响应处理函数: 创建和发送 GET 请求: 处理响应: 主循环: 注意事项 ESP32 是一款功能强大的微控制器,支持多种通信协议,包括 CoAP(Constrained Application Protocol)。CoAP 是一种专为物联…...

【Kubernetes】常见面试题汇总(五十七)
目录 125. K8S 创建服务 status 为 ErrlmagePull? 126.不能进入指定容器内部? 特别说明: 题目 1-68 属于【Kubernetes】的常规概念题,即 “ 汇总(一)~(二十二)” 。 题目 …...

Java 设计模式 构建者模式
文章目录 1 概念2 使用方法1 创建步骤:2 使用步骤: 参考 1 概念 builder模式又叫建造者模式,属于创建型模式 作用:将一个复杂对象的构建与他的表示分离,可以一步一步构建对象,而不是使用构造函数构造一次…...

建设企业网站如何建
首先,企业网站是企业数字化转型的重要组成部分。在数字化浪潮的冲击下,企业需要通过建设网站来实现信息化管理,提高工作效率。通过企业网站,企业可以便捷地发布最新产品信息、公司新闻、招聘信息等,极大地提升了信息传…...

C++ inline 的更进一步理解
文章目录 1.概述2.ODR(One Definition Rule)问题3.范例测试代码4.好坏分析 ODR: One Definition Rule,即单一定义规则, C 语言中非常重要的一项规则,它确保程序的行为一致性并避免链接时出现冲突。ODR 的核心思想是在整个程序中,每…...

海康威视云台相机图像获取
直接上代码: import cv2# 替换为正确的RTSP链接 rtsp_url rtsp://admin:abcd12345192.168.1.64:554/h264/ch1/main/av_stream cap cv2.VideoCapture(rtsp_url)if not cap.isOpened():print("无法打开视频流,检查RTSP URL和凭证") else:whil…...

什么是词嵌入(Word Embedding)
1. 什么是词嵌入(Word Embedding) ⾃然语⾔是⼀套⽤来表达含义的复杂系统。在这套系统中,词是表义的基本单元。顾名思义,词向量是⽤来表⽰词的向量,也可被认为是词的特征向量或表征。把词映射为实数域向量的技术也叫词嵌⼊(word e…...

LSTM时间序列模型实战——预测上证指数走势
LSTM时间序列模型实战——预测上证指数走势 关于作者 作者:小白熊 作者简介:精通python、matlab、c#语言,擅长机器学习,深度学习,机器视觉,目标检测,图像分类,姿态识别,…...

基于 STM32F407 的 SPI Flash下载算法
目录 一、概述二、自制 FLM 文件1、修改使用的芯片2、修改输出算法的名称3、其它设置4、修改配置文件 FlashDev.c5、文件 FlashPrg.c 的实现 三、验证算法 一、概述 本文将介绍如何使用 MDK 创建 STM32F407 的 SPI Flash 下载算法。 其中,SPI Flash 芯片使用的是 W…...

力扣之1355.活动参与者
题目: Sql 测试用例: Create table If Not Exists Friends (id int, name varchar(30), activity varchar(30)); Create table If Not Exists Activities (id int, name varchar(30)); Truncate table Friends; insert into Friends (id, name, acti…...

数据资产治理:构建敏捷与安全的数据管理体系
在当今数字化的盛况下,作为核心资产的数据已经越发受到企业的重视。但是随着公司的逐步壮大,如何分析这些数据以及如何有效治理数据资产,以确保安全性、合规性以及易用性,是企业面临的重大挑战。数聚股份将从多年从业经验深度探讨…...

Nodejs连接Mysql笔记
框架搭建 安装Node.js 首先,确保你已经在系统上安装了Node.js和npm(Node Packaged Modules)。你可以通过以下命令检查是否已经安装:shell 或者 node -v 或者 npm -v 数据库连接代码 1.导入MySQL2库 npm install mysql2 2.在文件…...

Canvas:AI协作的新维度
在人工智能的浪潮中,OpenAI的最新力作Canvas,不仅是一款新工具,它标志着人工智能协作方式的一次革命性飞跃。Canvas为写作和编程提供了一个全新的交互界面,让用户能够与ChatGPT进行更紧密、更直观的协作。 Canvas的…...

【深度学习】— softmax回归、网络架构、softmax 运算、小批量样本的向量化、交叉熵
【深度学习】— softmax回归、网络架构、softmax 运算、小批量样本的向量化、交叉熵 3.4 Softmax 回归3.4.1 分类问题3.4.2 网络架构 3.4.3 全连接层的参数开销3.4.4 softmax 运算3.4.5 小批量样本的向量化3.4.6 损失函数对数似然softmax 的导数 3.4.7 信息论基础熵信息量重新审…...

C# Wpf 图片按照鼠标中心缩放和平移
C# Wpf 图片按照鼠标中心缩放和平移 1、缩放事件 MouseWheel(object sender, MouseWheelEventArgs e)2、平移相关的事件 MouseMove(object sender, MouseEventArgs e) MouseDown(object sender, MouseButtonEventArgs e) MouseUp(object sender, MouseButtonEventArgs e)3、…...

网络安全产品类型
1. 防火墙(Firewall) 功能:防火墙是网络安全的第一道防线,通过检查进出网络的流量来阻止未经授权的访问。它可以基于预定义的安全规则,过滤数据包和阻止恶意通信。 类型: 硬件防火墙:以专用设备…...

【开源风云】从若依系列脚手架汲取编程之道(五)
📕开源风云系列 🍊本系列将从开源名将若依出发,探究优质开源项目脚手架汲取编程之道。 🍉从不分离版本开写到前后端分离版,再到微服务版本,乃至其中好玩的一系列增强Plus操作。 🍈希望你具备如下…...

金融市场的衍生品交易及其风险管理探讨
金融衍生品市场是现代金融体系的重要组成部分,其交易量和复杂性在过去几十年中迅速增长。衍生品,如期权、期货、掉期等,因其灵活性和杠杆效应,广泛应用于风险管理、投机和资产配置等多个领域。本文将探讨金融衍生品交易的关键特点…...

一、创建型(单例模式)
单例模式 概念 单例模式是一种创建型设计模式,确保一个类只有一个实例,并提供一个全局访问点。它控制类的实例化过程,防止外部代码创建新的实例。 应用场景 日志记录:确保只有一个日志记录器,以便于管理和避免重复记…...

毕业设计项目-古典舞在线交流平台的设计与实现(源码/论文)
项目简介 基于springboot实现的,主要功能如下: 技术栈 后端框框:springboot/mybatis 前端框架:html/JavaScript/Css/vue/elementui 运行环境:JDK1.8/MySQL5.7/idea(可选)/Maven3(…...

【秋招笔试】10.09华子秋招(已改编)-三语言题解
🍭 大家好这里是 春秋招笔试突围,一起备战大厂笔试 💻 ACM金牌团队🏅️ | 多次AK大厂笔试 | 大厂实习经历 ✨ 本系列打算持续跟新 春秋招笔试题 👏 感谢大家的订阅➕ 和 喜欢💗 和 手里的小花花🌸 ✨ 笔试合集传送们 -> 🧷春秋招笔试合集 本次的三题全部上线…...

【算法笔记】双指针算法深度剖析
【算法笔记】双指针算法深度剖析 🔥个人主页:大白的编程日记 🔥专栏:算法笔记 文章目录 【算法笔记】双指针算法深度剖析前言一.移动零1.1题目1.2思路分析1.3代码实现 二.复写零2.1题目2.2思路分析2.3代码实现 三.快乐数3.1题目…...

第二十二天|回溯算法| 理论基础,77. 组合(剪枝),216. 组合总和III,17. 电话号码的字母组合
目录 回溯算法理论基础 1.题目分类 2.理论基础 3.回溯法模板 补充一个JAVA基础知识 什么时候用ArrayList什么时候用LinkedList 77. 组合 未剪枝优化 剪枝优化 216. 组合总和III 17. 电话号码的字母组合 回溯法的一个重点理解:细细理解这句话!…...

关闭IDM自动更新
关闭IDM自动更新 1 打开注册表2 找到IDM注册表路径 1 打开注册表 winR regedit 2 找到IDM注册表路径 计算机\HKEY_CURRENT_USER\Software\DownloadManager 双击LstCheck,把数值数据改为0 完成 感谢阅读...

Go 性能剖析工具 pprof 与 Graphviz 教程
在 Golang 开发中,性能分析是确保应用高效运行的重要环节。本文介绍如何使用 gin-contrib/pprof 在 Gin 应用中集成性能剖析工具,并结合 Graphviz 生成图形化的性能分析结果,如火焰图。这套流程帮助开发者更好地理解和优化 Go 应用的性能。 目…...

【题目解析】蓝桥杯23国赛C++中高级组 - 斗鱼养殖场
【题目解析】蓝桥杯23国赛C中高级组 - 斗鱼养殖场 题目链接跳转:点击跳转 前置知识: 了解过基本的动态规划。熟练掌握二进制的位运算。 题解思路 这是一道典型的状压动态规划问题。设 d p i , j dp_{i, j} dpi,j 表示遍历到第 i i i 行的时候&a…...

JavaScript可视化:探索顶尖的图表库
JavaScript可视化:探索顶尖的图表库 在这个被数据驱动的时代,你有没有想过,数据本身是如何变得有意义的?答案就是数据可视化。通过图表和图形,我们不仅可以看到数据,还可以感受到它,从而做出明…...

谷歌AI大模型Gemini API快速入门及LangChain调用视频教程
1. 谷歌Gemini API KEY获取及AI Studio使用 要使用谷歌Gemini API,首先需要获取API密钥。以下是获取API密钥的步骤: 访问Google AI Studio: 打开浏览器,访问Google AI Studio。使用Google账号登录,若没有账号…...