当前位置: 首页 > news >正文

【机器学习】——决策树以及随机森林

文章目录

  • 1. 决策树的基本概念与结构
    • 1.1 决策树的构建过程
  • 2. 决策树的划分标准
    • 2.1 信息增益(Information Gain)
    • 2.2 信息增益比(Information Gain Ratio)
    • 2.3 基尼指数(Gini Index)
    • 2.4 均方误差(Mean Squared Error, MSE)
  • 3. 决策树的停止条件与剪枝策略
    • 3.1 停止条件
    • 3.2 剪枝策略
    • 3.3 剪枝策略的实现
  • 4. 决策树的优缺点分析
    • 4.1 优点
    • 4.2 缺点
  • 5. 决策树算法的改进与集成方法
    • 5.1 随机森林(Random Forest)
    • 5.2 提升树(Boosting Tree)
    • 5.3 XGBoost 和 LightGBM
    • 5.4 CatBoost
  • 6. 决策树模型的调参策略
    • 6.1 树深度(max_depth)
    • 6.2 最小样本分裂数(min_samples_split)
    • 6.3 最小样本叶子数(min_samples_leaf)
    • 6.4 分裂准则(criterion)
    • 6.5 最大特征数(max_features)
    • 6.6 树剪枝参数(ccp_alpha)
  • 7. 决策树模型的实际应用
    • 7.1 医疗诊断
    • 7.2 客户分群与信用风险评估
    • 7.3 营销决策
    • 7.4 欺诈检测
  • 8. 经典案例分析
    • 8.1 泰坦尼克号生还预测
    • 8.2 房价预测
  • 9. 决策树在工业界的应用与发展前景
    • 9.1 决策树的发展前景

前言:决策树算法(Decision Tree)详解
决策树(DecisionTree)是一种基于树形结构的监督学习算法,广泛应用于分类和回归任务。它通过一系列的决策规则逐步将数据集划分成多个子集,从而构建出易于理解的决策模型。决策树不仅易于可视化、便于解释,还能够处理复杂的多变量决策问题,因此在各类机器学习模型中占有重要地位。

1. 决策树的基本概念与结构

决策树算法的核心是一个树形结构,由多个**节点(Node)和分支(Branch)**组成。根据节点的类型,决策树的结构可以分为三种基本元素:

1.根节点(Root Node):表示整个数据集的初始状态,是树的起始点。根节点基于某个特征(属性)将数据分为不同的子节点。

2.内部节点(Internal Node):每个内部节点表示一个决策点,即通过某个特征将数据进一步细分。每个内部节点可以有多个子节点(分支)。

3.叶节点(Leaf Node):叶节点是决策树的终点,表示最终的决策或分类结果。每个叶节点通常表示某个类别或一个连续值(回归问题)。

决策树的生成过程就是不断通过特征选择和数据划分,直到满足某个停止条件(如到达叶节点或没有可分的特征)。

1.1 决策树的构建过程

决策树的构建过程主要分为以下几个步骤:

1.特征选择(Feature Selection):在每一步划分时,选择一个最佳特征作为决策依据,进行数据划分。

2.节点分裂(Node Splitting):根据选择的特征,利用不同的分裂准则将当前节点的数据集划分成若干子集。

3.递归分裂(Recursive Splitting):对每个子集递归执行特征选择与节点分裂操作,直到满足停止条件。

4.树剪枝(Tree Pruning):为了避免决策树过拟合(Overfitting),需要对生成的决策树进行简化,去除多余的分支节点。

2. 决策树的划分标准

决策树在每次划分时需要选择一个“最佳”的特征,该特征能够最大程度上提高数据的区分度。常见的划分标准包括信息增益、信息增益比、基尼指数和均方误差等。

2.1 信息增益(Information Gain)

信息增益用于衡量某个特征在划分数据集时带来的信息不确定性减少的程度。其定义基于**熵(Entropy)**的概念:

熵表示数据集的混乱度或不确定性程度。对于一个分类问题,数据集
D 的熵定义为:
在这里插入图片描述
其中,𝑝𝑖表示第 𝑖 类别在数据集中的比例,𝑘 是类别的总数。
当使用特征 𝐴 对数据集 𝐷 进行划分时,特征 𝐴 的信息增益 Gain(D,A) 计算如下:
在这里插入图片描述
其中,
𝐷𝑣是特征 𝐴的第 𝑣 个取值对应的子集,∣𝐷𝑣∣ 表示该子集的样本数,∣𝐷∣表示原始数据集的样本总数。
信息增益越大,说明该特征能够更好地划分数据集。

2.2 信息增益比(Information Gain Ratio)

由于信息增益偏向于选择取值较多的特征,因此引入信息增益比来消除这一偏差。其定义如下:
在这里插入图片描述
其中,分裂信息(Split Information)定义为:
在这里插入图片描述
信息增益比选择的是增益比值最大的特征进行划分。

2.3 基尼指数(Gini Index)

基尼指数主要用于分类树(Classification Tree)中。其衡量某个数据集的纯度,定义如下:
在这里插入图片描述
基尼指数越小,表示数据集的纯度越高。对于特征 𝐴 的划分,基尼指数的计算如下:
在这里插入图片描述
基尼指数越小,说明特征 𝐴 划分后数据集的纯度越高。

2.4 均方误差(Mean Squared Error, MSE)

在**回归树(Regression Tree)**中,使用均方误差来衡量数据点偏离均值的程度。对于数据集 𝐷 中的目标值 𝑦𝑖 ,均方误差定义为:
在这里插入图片描述
其中,𝑦^ 是数据集的平均值。

3. 决策树的停止条件与剪枝策略

在构建决策树时,若不设定停止条件,决策树可能会继续分裂,直到每个叶节点只包含一个数据点或所有数据点都属于同一类别。这种情况容易导致过拟合。为了防止过拟合,决策树通常需要设置以下停止条件或进行剪枝。

3.1 停止条件

1.当前节点的所有样本都属于同一类别。
2.样本特征已经全部使用完,且无法进一步划分。
3.当前节点的样本数低于设定的最小样本数。
4.当前节点的熵或基尼指数低于某个阈值。

3.2 剪枝策略

剪枝策略可以分为预剪枝(Pre-Pruning)和后剪枝(Post-Pruning):

1.预剪枝(Pre-Pruning):在构建过程中提前停止树的生长,如限制树的最大深度、最小样本数等。虽然能减少计算量,但可能造成欠拟合。

2.后剪枝(Post-Pruning):在决策树完全生长后,通过剪去一些不重要的节点(或子树)来简化模型。常用的方法包括代价复杂度剪枝(Cost Complexity Pruning)和最小误差剪枝(Minimum Error Pruning)。

3.3 剪枝策略的实现

代价复杂度剪枝: 定义一个代价复杂度函数 C(T)= R(T)+ α(T)其中 R(T) 表示树 T 的误差率,∣T∣ 是叶节点的数量,𝛼 是控制树复杂度的超参数。通过选择最小的 C(T) 剪去代价最高的子树。

4. 决策树的优缺点分析

4.1 优点

1.易于理解和解释:决策树能够以可视化的方式表示,并能直接从树中提取决策规则。
2.不需要特征标准化:决策树对特征的取值范围不敏感,可以直接处理数值型和类别型特征。
3.处理缺失值:决策树可以处理缺失值,并能生成替代路径。

4.2 缺点

1.容易过拟合:当决策树过于复杂时,模型容易对训练数据产生过拟合,导致对新数据泛化能力差。
2.对噪声敏感:数据中的少量噪声或异常点可能会对树结构产生较大影响。
偏向取值较多的特征:决策树在选择特征时,可能偏向选择取值较多的特

5. 决策树算法的改进与集成方法

为了克服传统决策树的局限性,研究人员提出了多种改进和集成方法,如随机森林(Random Forest)、**提升树(Boosting Tree)和梯度提升决策树(Gradient Boosting Decision Tree, GBDT)**等。这些集成方法通过构建多个弱决策树模型并将其组合,大大提升了模型的稳定性和预测能力。

5.1 随机森林(Random Forest)

随机森林是一种基于**袋装法(Bagging)**的集成学习方法。它通过构建多个相互独立的决策树并对其结果进行投票(分类问题)或平均(回归问题)来得到最终的预测结果。与单一决策树相比,随机森林具有以下优点:

1.减少过拟合风险:随机森林通过随机采样和特征选择,降低了单一决策树对噪声和异常点的敏感性,从而减小了过拟合的风险。

2.提高模型鲁棒性:每棵树都是独立训练的,模型对单个特征的依赖性较低,鲁棒性较强。

3.重要特征度量:随机森林能够输出特征重要性度量指标,便于选择和优化特征。

5.2 提升树(Boosting Tree)

提升树是一种基于**提升法(Boosting)**的集成学习方法。与袋装法不同,提升法是通过训练多个弱学习器(如决策树),每个学习器都尝试修正前一个学习器的错误,从而逐步提升模型性能。典型的提升树算法包括:

1.AdaBoost:通过分配权重来调整每个样本的重要性,重点关注被前一轮分类错误的样本,从而构建一个综合的强分类器。

2.梯度提升决策树(GBDT):GBDT通过在每一步迭代中最小化损失函数(如平方误差、对数损失等),逐步提高模型预测能力。GBDT具有较高的准确性,常用于回归和分类问题。

5.3 XGBoost 和 LightGBM

1.XGBoost:是GBDT的改进版本,通过引入正则化项、防止过拟合和高效的并行计算等技术,提升了训练速度和模型性能。

2.LightGBM:LightGBM通过基于直方图的高效分裂策略,在处理大规模数据时比XGBoost更快,且能够处理类别特征和缺失值。

5.4 CatBoost

CatBoost 是Yandex推出的一种专门处理类别特征的提升树模型。它引入了目标编码(Target Encoding)和随机排列的方式来降低类别特征导致的过拟合问题,常用于复杂的分类任务。征,从而导致模型的不稳定性。

6. 决策树模型的调参策略

决策树模型有多个超参数,如树的深度、最小样本数、分裂准则等。合理调参能够有效提升模型性能。常用的调参策略如下:

6.1 树深度(max_depth)

含义:限制决策树的最大深度,防止树过深导致过拟合。
调参策略:在较大的深度范围内进行网格搜索或交叉验证,找到使模型性能最优的深度。

6.2 最小样本分裂数(min_samples_split)

含义:设置每次分裂时节点中需要的最小样本数。较大的样本数会导致树更为精简,降低过拟合风险。
调参策略:根据数据集大小进行调节,通常设置为 2 到 20 之间。

6.3 最小样本叶子数(min_samples_leaf)

含义:设置叶节点中需要的最小样本数,避免生成过小的叶子节点,从而提升泛化能力。
调参策略:该参数通常设置为 1 到 10 之间,叶子数越大,模型越简单。

6.4 分裂准则(criterion)

含义:指定特征选择时的分裂准则。常用准则包括“基尼系数(gini)”和“信息增益(entropy)”。
调参策略:对于大多数分类任务,“基尼系数”通常表现较好,但对于一些平衡的分类问题,信息增益可能更合适。

6.5 最大特征数(max_features)

含义:每次分裂时使用的最大特征数,避免模型对某些特征过于依赖。
调参策略:设置为“auto”或“sqrt”常能提升性能,也可以根据实际特征数量调整。

6.6 树剪枝参数(ccp_alpha)

含义:用于控制决策树的复杂度,值越大表示剪枝力度越强。
调参策略:通过交叉验证找到最优的剪枝参数,防止模型过拟合。

7. 决策树模型的实际应用

7.1 医疗诊断

决策树广泛应用于医疗数据分析中,例如预测某种疾病的可能性。医生可以通过决策树的结构轻松理解诊断过程。

7.2 客户分群与信用风险评估

在金融领域,决策树用于客户分群和信用风险评估。银行可以利用决策树模型分析客户数据,确定客户是否具有良好的信用评分,从而决定是否放贷。

7.3 营销决策

决策树在市场营销中用于细分客户群体,帮助企业根据不同群体的特征制定相应的营销策略。通过分析客户的年龄、性别、购买历史等特征,决策树能够预测客户对某种产品的偏好。

7.4 欺诈检测

决策树能够快速识别数据中的异常模式,因此在信用卡欺诈检测中应用广泛。模型能够从交易数据中发现异常行为,并及时标记可疑的交易。

8. 经典案例分析

8.1 泰坦尼克号生还预测

在泰坦尼克号乘客数据集中,决策树可以根据乘客的年龄、性别、舱位等级等特征,预测乘客的生还概率。决策树通过一系列规则(如“性别为女性,则生还概率高”)来构建模型。

8.2 房价预测

在房价预测中,回归树可以根据房屋面积、位置、房龄等特征,将数据集划分成多个区域,并根据每个区域的均值预测房价。

9. 决策树在工业界的应用与发展前景

1.自动化决策系统:决策树可以帮助企业在客户服务、产品推荐等场景中实现自动化决策。

2.智能制造:在制造业中,决策树可以用来检测生产过程中的异常模式,从而提升生产效率。

3.个性化推荐系统:结合决策树的特征选择能力,能够为用户提供更精准的推荐方案。

9.1 决策树的发展前景

随着大数据和深度学习的发展,决策树作为一种传统的机器学习模型,依然在许多场景中具有不可替代的作用。未来,决策树将与深度学习模型相结合,形成更复杂的混合模型,从而在更多领域中发挥其优势。

通过以上详尽介绍,读者能够全面理解决策树算法的原理、应用及其优化方法,并能够在实际项目中灵活运用该模型来解决复杂问题。

相关文章:

【机器学习】——决策树以及随机森林

文章目录 1. 决策树的基本概念与结构1.1 决策树的构建过程 2. 决策树的划分标准2.1 信息增益(Information Gain)2.2 信息增益比(Information Gain Ratio)2.3 基尼指数(Gini Index)2.4 均方误差(…...

怎么选择合适的数据恢复软件?适用于 Windows 的数据恢复软件对比

针对 Windows 的领先数据恢复软件的全面回顾: 丢失重要数据对任何 Windows 用户来说都是一场噩梦。从意外删除到系统崩溃,数据丢失是一个非常普遍的问题。值得庆幸的是,有强大的数据恢复工具可以帮助找回丢失的文件。这篇评论深入探讨了适用于…...

CI/CD 和 DevOps 工具概述:Jenkins 、Docker 的概述、工作流程、对比

随着软件开发的复杂性不断增加,持续集成(CI)、持续交付(CD)和运维(Ops)的概念逐渐成为现代软件开发流程中的核心组成部分。这些概念促进了开发团队与运维团队之间的协作,提升了软件的…...

基于SpringBoot+Vue+uniapp的高校教务管理小程序系统设计和实现

2. 详细视频演示 文章底部名片,联系我获取更详细的演示视频 3. 论文参考 4. 项目运行截图 代码运行,效果展示图 代码运行,效果展示图 代码运行,效果展示图 代码运行,效果展示图 代码运行,效果展示图 5. 技…...

如何在 Ubuntu VPS 上从 Apache Web 服务器迁移到 Nginx

前些天发现了一个巨牛的人工智能学习网站,通俗易懂,风趣幽默,忍不住分享一下给大家。点击跳转到网站。 简介 在启动网站或应用程序时,您需要做出许多选择。有时,您的需求会发生变化,新技术变得可行&#x…...

pikachu靶场总结(一)

最近看到好多人还在打这个靶机所以把以前写的总结放上来了,主要是皮卡丘靶场漏洞的原理,利用方式,防护方法简略总结,纯手敲记录,总结如果不到位请评论区留言! 一、暴力破解 1.基于表单的暴力破解 原理&a…...

No.2 笔记 | 网络安全攻防:PC、CS工具与移动应用分析

引言 在当今数字化时代,网络安全已成为每个人都应该关注的重要话题。本文将总结一次关于网络安全攻防技术的学习内容,涵盖PC端和移动端的恶意程序利用,以及强大的渗透测试工具Cobalt Strike的使用。通过学习这些内容,我们不仅能够了解攻击者的手法,更能提高自身的安全意识和防…...

QD1-P8 HTML格式化标签

本节学习&#xff1a;HTML 格式化标签。 本节视频 www.bilibili.com/video/BV1n64y1U7oj?p8 ‍ 一、font 标签 用途&#xff1a;定义文本的字体大小、颜色和 face&#xff08;字体类型&#xff09;。 示例 <!DOCTYPE html> <html><head><meta cha…...

WordPress修改固定链接后301的重定向方法

网站改版实际上是很忌讳的&#xff0c;尤其是针对已被搜索引擎收录的网站&#xff0c;新站不用考虑这些问题&#xff0c;而已经收录的网站网页在不遵守搜索引擎规则的前提下&#xff0c;是会被降权&#xff0c;关键词排名下滑、流量IP会被剥夺、收录会减少 、业务成交量会急剧下…...

关于Allegro导出Gerber时的槽孔问题

注意点一&#xff1a; 如果设计的板子中有 槽孔和通孔(俗称圆孔)&#xff0c;不仅要NC Drill, 还要 NC Route allegro导出的槽孔文件后缀是 .rou 圆型孔后缀 是 .drl &#xff0c;出gerber时需要看下是否有该文件。 注意点二&#xff1a; 导出钻孔文件时&#xff0c;设置参…...

平时使用的正则总结

1、将某一个字符串的后缀名后面加上“!400_500” 使用场景是将minio拿过来的图片压缩尺寸从而压缩其大小&#xff0c;加快渲染的速度。需要在图片的后缀名后面加上尺寸如下&#xff1a; const str //storage-test.test.shiqiao.com/gateway/common/isopen/2024/10/09/e708e9…...

[万字解析]从零开始使用transformers微调huggingface格式的中文Bert模型的过程以及可能出现的问题

系列文章目录 使用transformers中的pipeline调用huggingface中模型过程中可能遇到的问题和修改建议 [万字解析]从零开始使用transformers微调huggingface格式的中文Bert模型的过程以及可能出现的问题 文章目录 系列文章目录前言模型与数据集下载模型下载数据集下载 数据加载、…...

K8s简介及环境搭建

一、Kubernetes简介 kubernetes 的本质是一组服务器集群&#xff0c;它可以在集群的每个节点上运行特定的程序&#xff0c;来对节点中的容器进行管理。目的是实现资源管理的自动化&#xff0c;主要提供了如下的主要功能&#xff1a; 自我修复&#xff1a;一旦某一个容器崩溃&a…...

Python对PDF文件页面的旋转和切割

Python对PDF文件页面的旋转和切割 利用Python的.rotate()方法和.mediabox属性对PDF页面进行旋转和切割&#xff0c;最终生成一个PDF。下面结合案例进行说明&#xff0c;本示例中的名为split_and_rotate.pdf文件在practice_files文件夹中&#xff0c; 示例&#xff08;1&#…...

Android 10.0 修改Systemui三键导航栏虚拟按键颜色功能实现

1.前言 在10.0的系统ROM定制化开发中,在对systemui的相关定制化开发中,在某些产品中,需要修改相关的 导航栏三键导航的虚拟按键的颜色,修改掉原来默认的虚拟按键的黑白色,接下来就来实现相关的功能 2.修改Systemui三键导航栏虚拟按键颜色功能实现的核心类 frameworks\ba…...

『网络游戏』客户端使用PESorket发送消息到服务器【14】

上一章服务器已经完成使用PESorket 现在我们将其导出在客户端中使用 生成成功后复制 粘贴到Unity项目中 进入Assets文件夹 粘贴两个.dll 创建脚本:ClientSession.cs 编写脚本: ClientSession.cs 编写脚本:GameStart.cs 将GameStart.cs脚本绑定在摄像机上 运行服务器 运行客户端…...

JVM(学习预热 - 走进Java)(持续更新迭代)

目录 一、彻底认识Java虚拟机 开创世纪&#xff1a;Sun Classic 开创世纪&#xff1a;Exact VM 武林霸主&#xff1a;HotSpot VM 移动端虚拟机&#xff1a;Mobile/Embedded VM “三大”其二&#xff1a;BEA JRockit/IBM J9 VM 软硬结合&#xff1a;BEA Liquid VM/Azul VM…...

43 C 程序动态内存分配:内存区域划分、void 指针、内存分配相关函数(malloc、calloc、realloc、_msize、free)、内存泄漏

目录 1 C 程序内存区域划分 1.1 代码区 (Code Section) 1.2 全局/静态区 (Global/Static Section) 1.3 栈区 (Stack Section) 1.4 堆区 (Heap Section) 1.5 动态内存分配 2 void 指针&#xff08;无类型指针&#xff09; 2.1 void 指针介绍 2.2 void 指针的作用 2.3 …...

编译链接的过程发生了什么?

一&#xff1a;程序的翻译环境和执行环境 在 ANSI C 的任何一种实现中&#xff0c;存在两个不同的环境。 第 1 种是翻译环境&#xff0c;在这个环境中源代码被转换为可执行的机器指令。 第 2 种是执行环境&#xff0c;它用于实际执行代码 也就是说&#xff1a;↓ 1&#xff1…...

【D3.js in Action 3 精译_028】3.4 小节 DIY 实战:使用 Observable 在线绘制 D3 条形图

当前内容所在位置&#xff08;可进入专栏查看其他译好的章节内容&#xff09; 第一部分 D3.js 基础知识 第一章 D3.js 简介&#xff08;已完结&#xff09; 1.1 何为 D3.js&#xff1f;1.2 D3 生态系统——入门须知1.3 数据可视化最佳实践&#xff08;上&#xff09;1.3 数据可…...

【Linux】 TCP短服务编写和守护进程

文章目录 TCP 短服务编写流程进程组和会话和守护进程 TCP 短服务编写流程 TCP服务器是面向连接的&#xff0c;客户端在发送数据之前需要先与服务器建立连接。 因此&#xff0c;TCP服务器需要能够监听客户端的连接请求。为了实现这一功能&#xff0c;需要将TCP服务器创建的套接字…...

自学数据库-MYSQL

自学数据库-MYSQL 一.表和视图1.表1.1 表创建1.2 索引1.2.1 这里是废话,不感兴趣的可以直接更具目录的跳过这里的内容1.2.1.1 索引是什么1.2.1.2 相关数据结构&#xff1a;二叉树、红黑树、B-Tree、BTree、Hash…①普通索引②唯一索引③全文索引④组合索引 1.3 表数据操作(更新…...

机器学习——多模态学习

多模态学习&#xff1a;机器学习领域的新视野 引言 多模态学习&#xff08;Multimodal Learning&#xff09;是机器学习中的一个前沿领域&#xff0c;它涉及处理和整合来自多个数据模式&#xff08;如图像、文本、音频等&#xff09;的信息。随着深度学习的蓬勃发展&#xff0…...

​ceph掉电后无法启动osd,pgs unknown

处理办法&#xff1a; 只有1个osd,单副本&#xff0c;掉电损坏osd&#xff0c;只能考虑重建pg&#xff0c;丢失部分数据了。生产环境务必考虑2&#xff0c;3副本设计。避免掉电故障风险。 掉电后osdmap丢失无法启动osd的解决方案 - 武汉-磨渣 - 博客园 https://zhuanlan.zhih…...

HTML5实现古典音乐网站源码模板1

文章目录 1.设计来源1.1 网站首页1.2 古典音乐界面1.3 著名人物界面1.4 古典乐器界面1.5 历史起源界面2.效果和源码2.1 动态效果2.2 源代码源码下载万套模板,程序开发,在线开发,在线沟通作者:xcLeigh 文章地址:https://blog.csdn.net/weixin_43151418/article/details/142…...

快速生成单元测试

1. Squaretest插件 2. 依赖 <dependency><groupId>junit</groupId>...

WebGL系列教程十一(光照原理及Blinn Phong着色模型)

快速导航&#xff08;持续更新中&#xff09; WebGL系列教程一&#xff08;开篇&#xff09; WebGL系列教程二&#xff08;环境搭建及着色器初始化&#xff09; WebGL系列教程三&#xff08;使用缓冲区绘制三角形&#xff09; WebGL系列教程四&#xff08;绘制彩色三角形&…...

《ASP.NET Web Forms 实现短视频点赞功能的完整示例》

在现代Web开发中&#xff0c;实现一个动态的点赞功能是非常常见的需求。本文将详细介绍如何在ASP.NET Web Forms中实现一个视频点赞功能&#xff0c;包括前端页面的展示和后端的处理逻辑。我们将确保点赞数量能够实时更新&#xff0c;而无需刷新整个页面。 技术栈 ASP.NET We…...

Linux SSH服务

Linux SSH&#xff08;Secure Shell&#xff09;服务是一种安全的远程登录协议&#xff0c;用于在Linux操作系统上远程登录和执行命令。它提供了加密的通信通道&#xff0c;可以在不安全的网络环境中安全地进行远程访问。 SSH服务在Linux系统中通常使用OpenSSH软件包来实现。它…...

MySQL--视图(详解)

目录 一、前言二、视图2.1概念2.2语法2.3创建视图2.3.1目的 2.4查看视图2.5修改数据2.5.1通过真实表修改数据&#xff0c;会影响视图2.5.2通过修改视图&#xff0c;会影响基表 2.6注意2.7 删除视图2.8 视图的优点 一、前言 欢迎大家来到权权的博客~欢迎大家对我的博客进行指导&…...