当前位置: 首页 > news >正文

【D3.js in Action 3 精译_028】3.4 小节 DIY 实战:使用 Observable 在线绘制 D3 条形图

当前内容所在位置(可进入专栏查看其他译好的章节内容)

  • 第一部分 D3.js 基础知识
    • 第一章 D3.js 简介(已完结)
      • 1.1 何为 D3.js?
      • 1.2 D3 生态系统——入门须知
      • 1.3 数据可视化最佳实践(上)
      • 1.3 数据可视化最佳实践(下)
      • 1.4 本章小结
    • 第二章 DOM 的操作方法(已完结)
      • 2.1 第一个 D3 可视化图表
      • 2.2 环境准备
      • 2.3 用 D3 选中页面元素
      • 2.4 向选择集添加元素
      • 2.5 用 D3 设置与修改元素属性
      • 2.6 用 D3 设置与修改元素样式
      • 2.7 本章小结
    • 第三章 数据的处理 ✔️
      • 3.1 理解数据(已完结)
      • 3.2 准备数据(已完结)
      • 3.3 将数据绑定到 DOM 元素(已完结)
        • 3.3.1 利用数据给 DOM 属性动态赋值
      • 【3.4 让数据适应屏幕】 ✔️
        • 3.4.1 比例尺简介(上篇)
        • 3.4.2 线性比例尺(中篇)
          • 3.4.2.1 基于 Mocha 测试 D3 线性比例尺(DIY 实战)
          • 3.4.2.2 使用 Observable 在线绘制 D3 条形图(DIY 实战) ✔️
        • 3.4.3 分段比例尺(下篇)
      • 3.5 加注图表标签(待翻译 ⏳)
      • 3.6 本章小结

文章目录

  • 3.4.2.2 使用 Observable 在线绘制 D3 条形图(DIY实战)
    • 1 需求描述
    • 2 操作步骤
      • 2.1 加载数据
      • 2.2 数据绑定
      • 2.3 调整比例
    • 3 小结 & 复盘

《D3.js in Action》全新第三版封面

《D3.js in Action》全新第三版封面

3.4.2.2 使用 Observable 在线绘制 D3 条形图(DIY实战)

写在前面

作为本书第三章的有益补充,一名合格的数据可视化从业者应该时刻关注业界最新前沿趋势、主流观点、最佳实践等等。这当中就必然包括 Observable 网站资源的合理利用。前面第一章介绍 Observable 笔记本功能(Notebooks)时,由于作者感觉偏离了本书重点,于是草草几句就结束了。今天就给大家打个样,去探探这个由 D3.js 创始人打造的 Observable 平台的深浅。

1 需求描述

根据目前的专栏进度,第三章的示例条形图除了数据标签还没实现,其他的部件基本都实现了。这次索性就把 D3 工作流那几个节点(如下图所示)从头到尾在 Observable 上实现一遍。

图 1 要同步在 Observable 实现一遍的 D3 数据工作流关键节点

【图 1 要同步在 Observable 实现一遍的 D3 数据工作流关键节点】

2 操作步骤

首先登录 Observable 平台:https://observablehq.com/。用邮箱注册一个帐户或者直接关联 GitHub 帐号即可。登录成功后,从个人主页右上方新建的一个笔记本,如图 2 所示:

图 2 新建一个 Observable 笔记

【图 2 新建一个 Observable 笔记】

在弹出窗口中为这个新笔记指定一个工作空间(Workspace),就相当于一个顶层文件夹。通常默认会选中一个,也可以手动指定。右边的模板就选默认的空白模板(Blank)即可,如图 3 所示:

图 3 为新笔记文件指定一个工作空间

【图 3 为新笔记文件指定一个工作空间】

点击 Create notebook 按钮,就正式进入 Observable 记事本的编辑页面了。此时会看到一个默认的 Markdown 格式的单元格,如图 4 所示:

图 4 进入 Observable 记事本编辑页看到的第一个单元格

【图 4 进入 Observable 记事本编辑页看到的第一个单元格】

那就用 Markdown 来一个华丽的标题吧,输入:# Ch3.4.3.1 DIY: Demo Bar Chart,然后按 Shift + Enter 快速执行,就有了下面的标题:

图 5 使用 Markdown 语法添加的记事本一级标题

【图 5 使用 Markdown 语法添加的记事本一级标题】

2.1 加载数据

完成上面的准备工作后,就可以加载数据了。原始的 CSV 数据集需要先上传到 Observable 网页,即右侧那个回形针图标:

图 6 将 CSV 原始数据集上传到 Observable 页面

【图 6 将 CSV 原始数据集上传到 Observable 页面】

上传完毕后,可以看到这个文件的相关信息,显示还未被使用:

图 7 文件上传完毕时的页面提示信息

【图 7 文件上传完毕时的页面提示信息】

这个数据集该怎么加载,变成我们需要的对象数组呢?熟悉 Python Jupyter Lab 的朋友肯定很熟悉这样的界面,其实 Observable 就是一个 JavaScript 版的 Jupyter Lab,所有数据操作都在单元格内进行。Observable 提供了 FileAttachment 接口来加载数据,要在 JavaScript 单元格内这样写:

FileAttachment('data.csv')

但这样得到的数据值全是字符串类型的,因此还需要调用一个 csv() 方法,并传入一个配置项,实现简单格式的自动转换:

FileAttachment('data.csv').csv({typed: true});

然后将结果赋给一个常量 data。注意,这里无需添加 constlet 关键字,声明的变量类似 Excel 里的单元格的值,可以全局引用。此外,Observable 的单元格严格遵循“单一职责”原则,因此最好写成 IIFE 形式:

data = (async function(){const data = await FileAttachment('data.csv').csv({typed: true});return data.sort((a, b) => d3.descending(a.count, b.count));
})();

这样,数据加载 + 转换 + 排序就一气呵成轻松实现了!我这里的排序还用到了一个新的工具函数:d3.descending(a.count, b.count)。仔细看,其实我并没有手动导入 D3 这个库,之所以能直接使用,是因为 Observable 已经内置了最新版的 D3.js(别人好歹是创始人,这点特权还是有的)。最后执行单元格的效果如下:

图 8 完成数据加载、转换、排序后的 Observable 页面效果截图

【图 8 完成数据加载、转换、排序后的 Observable 页面效果截图】

2.2 数据绑定

刚才一个单元格就实现了 D3 工作流的三个节点(即查找(文件上传)、加载、格式化),个人感觉比手动去调 Promise 省事多了。下一步就该定义 SVG 容器并绑定数据了。Observable 单元格支持三大基本类型:JavaScript 型、HTML 型以及 Markdown 型。按照书中的方法创建一个 div 元素倒也不是不行,只要在 HTML 格式的单元格里创建 div,再把样式写到一个 style 标签里就搞定了。但是 Observable 提供了更快的方式:

chart = {const svg = d3.create('svg').attr('viewBox', `0 0 600 700`).style('border', '1px solid black').style('max-width', 800).style('margin-inline', 'auto');return svg.node();
}

这段代码的最后一句,相当于导出 DOM 节点并赋值给变量 chart。同样按下 Shift + Enter,页面立刻渲染出了指定的容器:

图 10 执行 d3.create() 方法可以快速创建 SVG 容器

【图 10 执行 d3.create() 方法可以快速创建 SVG 容器】

因此,数据绑定逻辑只要稍加改动就行了:

图 11 改造后的 createViz 方法及其调用的写法

【图 11 改造后的 createViz 方法及其调用的写法】

剩下的工作就简单多了(其实整体来讲也没啥难度)。

2.3 调整比例

于是来到 D3 数据标准工作流的最后一环:调整比例大小。先定义好两个比例尺:

const xScale = d3.scaleLinear().domain([0, data[0].count]).range([0, 450]);const yScale = d3.scaleBand().domain(data.map(d => d.technology)).range([0, 700]).paddingInner(0.2);

由于 data 已经按 count 票数值降序排列,这里水平方向的定义域上边界就是 data[0].count 。接着再使用 D3 的数据绑定语法完成条形图的渲染:

const byTechName = ({technology: t}) =>(t === 'D3.js') ? 'yellowgreen' : 'skyblue';
svg.selectAll('rect').data(data).join('rect').attr('x', 100).attr('y', d => yScale(d.technology)).attr('height', yScale.bandwidth()).attr('width', d => xScale(d.count)).attr('fill', byTechName);

这里填充色的设置做了点小改动,提出了一个访问器函数(accessor function)byTechName,这样写起来更紧凑。最终完整的 createViz 逻辑如下:

createViz = (data, svg) => {// Declare D3's scale functionsconst xScale = d3.scaleLinear().domain([0, data[0].count]).range([0, 450]);const yScale = d3.scaleBand().domain(data.map(d => d.technology)).range([0, 700]).paddingInner(0.2);  // the gap size between 2 bars// data binding logics ...const byTechName = ({technology: t}) =>(t === 'D3.js') ? 'yellowgreen' : 'skyblue';svg.selectAll('rect').data(data).join('rect').attr('x', 100).attr('y', d => yScale(d.technology)).attr('height', yScale.bandwidth())  // i.e. bar height.attr('width', d => xScale(d.count)).attr('fill', byTechName);return svg.node();
};

运行该单元格,上面定义的 chart 单元格就渲染出了想要的条形图:

图 12 最终在 Observable 的记事本页面渲染出的条形图效果

【图 12 最终在 Observable 的记事本页面渲染出的条形图效果】

3 小结 & 复盘

以上演示内容还只是 Observable 平台功能的冰山一角,根据最新发布的新闻,Observable 不久前已经上线了自己的云平台 Observable Cloud,可以像 GitHubnpm 那样在线托管自己的可视化项目,并且提供了大量实用的工具,比如接入了 AI 的能力,专为数据应用量身打造的线上工作流等等。浏览过程中,我发现 D3 官网还没有和 Vue.js 做集成的相关内容,而且 Notebook 页面好像对 Mocha.js 这类测试框架不是很友好,目前只测通了断言库 Chai.js。窃以为,这些地方恰恰蕴藏着大量的机遇,值得各位 D3 爱好者们前来探索!

最后还是梳理成要点,谈谈这趟试水 Observable 平台的切身体会吧:

  1. 大胆尝试 Observable 环境,遇到问题再小心求证;
  2. 多使用 Observable 提供的便捷接口、工具函数。D3.js 的官方入门文档(https://d3js.org/getting-started)是个不错的切入口;
  3. 积极拥抱 D3 生态,不要拘泥于一本书、或者某个单一的环境;
  4. Observable 创建的记事本还能共享给多人访问,实现同步编辑、实时预览;
  5. 多从线上的优秀案例学习 D3.js 的不同写法,取长补短,融会贯通。

(完)

相关文章:

【D3.js in Action 3 精译_028】3.4 小节 DIY 实战:使用 Observable 在线绘制 D3 条形图

当前内容所在位置(可进入专栏查看其他译好的章节内容) 第一部分 D3.js 基础知识 第一章 D3.js 简介(已完结) 1.1 何为 D3.js?1.2 D3 生态系统——入门须知1.3 数据可视化最佳实践(上)1.3 数据可…...

【Linux】 TCP短服务编写和守护进程

文章目录 TCP 短服务编写流程进程组和会话和守护进程 TCP 短服务编写流程 TCP服务器是面向连接的,客户端在发送数据之前需要先与服务器建立连接。 因此,TCP服务器需要能够监听客户端的连接请求。为了实现这一功能,需要将TCP服务器创建的套接字…...

自学数据库-MYSQL

自学数据库-MYSQL 一.表和视图1.表1.1 表创建1.2 索引1.2.1 这里是废话,不感兴趣的可以直接更具目录的跳过这里的内容1.2.1.1 索引是什么1.2.1.2 相关数据结构:二叉树、红黑树、B-Tree、BTree、Hash…①普通索引②唯一索引③全文索引④组合索引 1.3 表数据操作(更新…...

机器学习——多模态学习

多模态学习:机器学习领域的新视野 引言 多模态学习(Multimodal Learning)是机器学习中的一个前沿领域,它涉及处理和整合来自多个数据模式(如图像、文本、音频等)的信息。随着深度学习的蓬勃发展&#xff0…...

​ceph掉电后无法启动osd,pgs unknown

处理办法: 只有1个osd,单副本,掉电损坏osd,只能考虑重建pg,丢失部分数据了。生产环境务必考虑2,3副本设计。避免掉电故障风险。 掉电后osdmap丢失无法启动osd的解决方案 - 武汉-磨渣 - 博客园 https://zhuanlan.zhih…...

HTML5实现古典音乐网站源码模板1

文章目录 1.设计来源1.1 网站首页1.2 古典音乐界面1.3 著名人物界面1.4 古典乐器界面1.5 历史起源界面2.效果和源码2.1 动态效果2.2 源代码源码下载万套模板,程序开发,在线开发,在线沟通作者:xcLeigh 文章地址:https://blog.csdn.net/weixin_43151418/article/details/142…...

快速生成单元测试

1. Squaretest插件 2. 依赖 <dependency><groupId>junit</groupId>...

WebGL系列教程十一(光照原理及Blinn Phong着色模型)

快速导航&#xff08;持续更新中&#xff09; WebGL系列教程一&#xff08;开篇&#xff09; WebGL系列教程二&#xff08;环境搭建及着色器初始化&#xff09; WebGL系列教程三&#xff08;使用缓冲区绘制三角形&#xff09; WebGL系列教程四&#xff08;绘制彩色三角形&…...

《ASP.NET Web Forms 实现短视频点赞功能的完整示例》

在现代Web开发中&#xff0c;实现一个动态的点赞功能是非常常见的需求。本文将详细介绍如何在ASP.NET Web Forms中实现一个视频点赞功能&#xff0c;包括前端页面的展示和后端的处理逻辑。我们将确保点赞数量能够实时更新&#xff0c;而无需刷新整个页面。 技术栈 ASP.NET We…...

Linux SSH服务

Linux SSH&#xff08;Secure Shell&#xff09;服务是一种安全的远程登录协议&#xff0c;用于在Linux操作系统上远程登录和执行命令。它提供了加密的通信通道&#xff0c;可以在不安全的网络环境中安全地进行远程访问。 SSH服务在Linux系统中通常使用OpenSSH软件包来实现。它…...

MySQL--视图(详解)

目录 一、前言二、视图2.1概念2.2语法2.3创建视图2.3.1目的 2.4查看视图2.5修改数据2.5.1通过真实表修改数据&#xff0c;会影响视图2.5.2通过修改视图&#xff0c;会影响基表 2.6注意2.7 删除视图2.8 视图的优点 一、前言 欢迎大家来到权权的博客~欢迎大家对我的博客进行指导&…...

Javascript 普通非async函数调用async函数

假设我们有一个异步函数 async function asyncFunction() {console.log("开始执行异步函数");await new Promise(resolve > setTimeout(resolve, 1000)); // 模拟异步操作console.log("异步函数执行完毕"); } 我们在调用这个异步函数时&#xff0c;比…...

【LeetCode】修炼之路-0004-Median of Two Sorted Arrays【python】

题目 Given two sorted arrays nums1 and nums2 of size m and n respectively, return the median of the two sorted arrays. The overall run time complexity should be O(log (mn)). Example 1: Input: nums1 [1,3], nums2 [2] Output: 2.00000 Explanation: merged…...

C++面试速通宝典——10

177. #include <filename> 和 #include "filname.h" 有什么区别&#xff1f; ‌‌‌‌  对于 #include <filename> &#xff0c; 编译器从标准库路径开始搜索 filename.h。 ‌‌‌‌  对于 #include "filename.h&#xff0c;编译器从用户的工作…...

肺腺癌预后新指标:全切片图像中三级淋巴结构密度的自动化量化|文献精析·24-10-09

小罗碎碎念 本期这篇文章&#xff0c;我去年分享过一次。当时发表在知乎上&#xff0c;没有标记参考文献&#xff0c;配图的清晰度也不够&#xff0c;并且分析的还不透彻&#xff0c;所以趁着国庆假期重新分析一下。 这篇文章的标题为《Computerized tertiary lymphoid structu…...

基于jmeter+perfmon的稳定性测试记录

1. 引子 最近承接了项目中一些性能测试的任务&#xff0c;因此决定记录一下&#xff0c;将测试的过程和一些心得收录下来。 说起来性能测试算是软件测试行业内&#xff0c;有些特殊的部分。这部分的测试活动&#xff0c;与传统的测试任务差别是比较大的&#xff0c;也比较依赖…...

前沿论文 M5Product 组会 PPT

对比学习&#xff08;Contrast learning&#xff09;&#xff1a;对比学习是一种自监督学习方法&#xff0c;用于在没有标签的情况下&#xff0c;通过让模型学习哪些数据点相似或不同来学习数据集的一般特征。假设一个试图理解世界的新生婴儿。在家里&#xff0c;假设有两只猫和…...

navicat~导出数据库密码

当我们mysql密码忘记了&#xff0c;而在navicat里有记录&#xff0c;我们应该如何导出这个密码呢&#xff1f; 第一步:文件菜单&#xff0c;导出链接&#xff0c;导出连接获取到 connections.ncx 文件 这里需要勾选 导出密码&#xff01;&#xff01;&#xff01; 不然导出的文…...

【Java】 —— 数据结构与集合源码:Vector、LinkedList在JDK8中的源码剖析

目录 7.2.4 Vector部分源码分析 7.3 链表LinkedList 7.3.1 链表与动态数组的区别 7.3.2 LinkedList源码分析 启示与开发建议 7.2.4 Vector部分源码分析 jdk1.8.0_271中&#xff1a; //属性 protected Object[] elementData; protected int elementCount;//构造器 public …...

YOLOv5改进——添加SimAM注意力机制

目录 一、SimAM注意力机制核心代码 二、修改common.py 三、修改yolo.py ​三、建立yaml文件 四、验证 一、SimAM注意力机制核心代码 在models文件夹下新建modules文件夹&#xff0c;在modules文件夹下新建一个py文件。这里为simam.py。复制以下代码到文件里面。 import…...

SkyWalking 10.2.0 SWCK 配置过程

SkyWalking 10.2.0 & SWCK 配置过程 skywalking oap-server & ui 使用Docker安装在K8S集群以外&#xff0c;K8S集群中的微服务使用initContainer按命名空间将skywalking-java-agent注入到业务容器中。 SWCK有整套的解决方案&#xff0c;全安装在K8S群集中。 具体可参…...

python打卡day49

知识点回顾&#xff1a; 通道注意力模块复习空间注意力模块CBAM的定义 作业&#xff1a;尝试对今天的模型检查参数数目&#xff0c;并用tensorboard查看训练过程 import torch import torch.nn as nn# 定义通道注意力 class ChannelAttention(nn.Module):def __init__(self,…...

Java如何权衡是使用无序的数组还是有序的数组

在 Java 中,选择有序数组还是无序数组取决于具体场景的性能需求与操作特点。以下是关键权衡因素及决策指南: ⚖️ 核心权衡维度 维度有序数组无序数组查询性能二分查找 O(log n) ✅线性扫描 O(n) ❌插入/删除需移位维护顺序 O(n) ❌直接操作尾部 O(1) ✅内存开销与无序数组相…...

《从零掌握MIPI CSI-2: 协议精解与FPGA摄像头开发实战》-- CSI-2 协议详细解析 (一)

CSI-2 协议详细解析 (一&#xff09; 1. CSI-2层定义&#xff08;CSI-2 Layer Definitions&#xff09; 分层结构 &#xff1a;CSI-2协议分为6层&#xff1a; 物理层&#xff08;PHY Layer&#xff09; &#xff1a; 定义电气特性、时钟机制和传输介质&#xff08;导线&#…...

Linux简单的操作

ls ls 查看当前目录 ll 查看详细内容 ls -a 查看所有的内容 ls --help 查看方法文档 pwd pwd 查看当前路径 cd cd 转路径 cd .. 转上一级路径 cd 名 转换路径 …...

苍穹外卖--缓存菜品

1.问题说明 用户端小程序展示的菜品数据都是通过查询数据库获得&#xff0c;如果用户端访问量比较大&#xff0c;数据库访问压力随之增大 2.实现思路 通过Redis来缓存菜品数据&#xff0c;减少数据库查询操作。 缓存逻辑分析&#xff1a; ①每个分类下的菜品保持一份缓存数据…...

大语言模型(LLM)中的KV缓存压缩与动态稀疏注意力机制设计

随着大语言模型&#xff08;LLM&#xff09;参数规模的增长&#xff0c;推理阶段的内存占用和计算复杂度成为核心挑战。传统注意力机制的计算复杂度随序列长度呈二次方增长&#xff0c;而KV缓存的内存消耗可能高达数十GB&#xff08;例如Llama2-7B处理100K token时需50GB内存&a…...

【Java学习笔记】BigInteger 和 BigDecimal 类

BigInteger 和 BigDecimal 类 二者共有的常见方法 方法功能add加subtract减multiply乘divide除 注意点&#xff1a;传参类型必须是类对象 一、BigInteger 1. 作用&#xff1a;适合保存比较大的整型数 2. 使用说明 创建BigInteger对象 传入字符串 3. 代码示例 import j…...

Python ROS2【机器人中间件框架】 简介

销量过万TEEIS德国护膝夏天用薄款 优惠券冠生园 百花蜂蜜428g 挤压瓶纯蜂蜜巨奇严选 鞋子除臭剂360ml 多芬身体磨砂膏280g健70%-75%酒精消毒棉片湿巾1418cm 80片/袋3袋大包清洁食品用消毒 优惠券AIMORNY52朵红玫瑰永生香皂花同城配送非鲜花七夕情人节生日礼物送女友 热卖妙洁棉…...

现有的 Redis 分布式锁库(如 Redisson)提供了哪些便利?

现有的 Redis 分布式锁库&#xff08;如 Redisson&#xff09;相比于开发者自己基于 Redis 命令&#xff08;如 SETNX, EXPIRE, DEL&#xff09;手动实现分布式锁&#xff0c;提供了巨大的便利性和健壮性。主要体现在以下几个方面&#xff1a; 原子性保证 (Atomicity)&#xff…...