消费者Rebalance机制
优质博文:IT-BLOG-CN
一、消费者Rebalance机制
在Apache Kafka
中,消费者组
Consumer Group
会在以下几种情况下发生重新平衡Rebalance
:
【1】消费者加入或离开消费者组: 当一个新的消费者加入消费者组或一个现有的消费者离开消费者组时,Kafka
会触发重新平衡,以重新分配分区给消费者。
【2】消费者崩溃或失去连接: 如果Kafka
检测到某个消费者崩溃或失去连接(例如,由于网络问题或消费者进程被终止),它会触发重新平衡。
【3】主题的分区数量发生变化: 如果一个主题的分区数量增加或减少,Kafka
会触发重新平衡,以确保新的分区被分配给消费者组中的消费者。
【4】消费者组协调器变更: 消费者组协调器是负责管理消费者组的一个Kafka Broker
。如果消费者组协调器发生变更(例如,协调器所在的Broker
崩溃),也会触发重新平衡。
【5】消费者组成员发送心跳失败: 消费者需要定期向消费者组协调器发送心跳heartbeat
以表明它们仍然活跃。如果心跳失败,协调器会认为该消费者已经失去连接,从而触发重新平衡。
rebalance
只针对subscribe
这种不指定分区消费的情况,如果通过assign
这种消费方式指定了分区,kafka
不会进行rebanlance
。
Kafka
在高峰期重平衡rebalancing
会导致消费者组的停顿,影响系统的性能和稳定性。为了避免在高峰期发生重平衡,可以采取以下几种策略:
【1】优化分区分配策略: 使用RangeAssignor
或StickyAssignor
等分区分配策略来减少重平衡的频率和影响。
RangeAssignor 是Kafka
默认的分区分配策略之一,它将分区按范围分配给消费者。
我们通过一个具体的例子来说明RangeAssignor
如何分配分区。
假设我们有一个Kafka
主题my-topic
,它有6
个分区P0, P1, P2, P3, P4, P5
,并且我们有3
个消费者C1, C2, C3
在一个消费者组中。
初始分配:假设初始分配如下:
C1: P0, P1
C2: P2, P3
C3: P4, P5
消费者组成员变化:现在假设C2
离开了消费者组,那么RangeAssignor
会重新分配分区,以确保分区尽量按顺序和均匀地分配给剩余的消费者。新的分配可能如下:
C1: P0, P1, P2
C3: P3, P4, P5
在这个过程中,RangeAssignor
将分区按顺序重新分配给剩余的消费者,确保每个消费者分配到的分区尽量连续。
新消费者加入:现在假设有一个新消费者C4
加入了消费者组,RangeAssignor
会再次按顺序和均匀地分配分区。新的分配可能如下:
C1: P0, P1
C3: P2, P3
C4: P4, P5
在这个过程中,RangeAssignor
将分区重新分配,以确保每个消费者分配到的分区尽量连续和均匀。
通过这个例子,我们可以看到RangeAssignor
的分配策略:
1、将分区按顺序分配给消费者。
2、当消费者组成员变化时,重新分配分区,以确保分区尽量按顺序和均匀地分配给所有消费者。
3、分区分配尽量保持连续性。
这种策略的好处是分区分配简单且稳定,减少了分区在消费者组成员变化时的重新分配范围,从而减少了重平衡的频率和影响。
以下是配置RangeAssignor
的代码示例:
import org.apache.kafka.clients.consumer.ConsumerConfig;
import org.apache.kafka.clients.consumer.KafkaConsumer;import java.util.Properties;public class RangeAssignorExample {public static void main(String[] args) {Properties props = new Properties();props.put(ConsumerConfig.BOOTSTRAP_SERVERS_CONFIG, "localhost:9092");props.put(ConsumerConfig.GROUP_ID_CONFIG, "example-group");props.put(ConsumerConfig.KEY_DESERIALIZER_CLASS_CONFIG, "org.apache.kafka.common.serialization.StringDeserializer");props.put(ConsumerConfig.VALUE_DESERIALIZER_CLASS_CONFIG, "org.apache.kafka.common.serialization.StringDeserializer");// 设置分区分配策略为 RangeAssignorprops.put(ConsumerConfig.PARTITION_ASSIGNMENT_STRATEGY_CONFIG, "org.apache.kafka.clients.consumer.RangeAssignor");KafkaConsumer<String, String> consumer = new KafkaConsumer<>(props);// 订阅主题consumer.subscribe(List.of("example-topic"));// 消费消息的逻辑// ...}
}
StickyAssignor 是Kafka 2.4
及以上版本引入的一种分区分配策略,它的目标是尽量保持分区分配的稳定性,减少重平衡的频率。
我们通过一个具体的例子来说明StickyAssignor
如何分配分区。
假设我们有一个Kafka
主题my-topic
,它有6
个分区P0, P1, P2, P3, P4, P5
,并且我们有3
个消费者C1, C2, C3
在一个消费者组中。
初始分配:假设初始分配如下:
C1: P0, P1
C2: P2, P3
C3: P4, P5
消费者组成员变化:现在假设C2
离开了消费者组,那么StickyAssignor
会尽量保持现有的分区分配不变,并重新分配C2
的分区。新的分配可能如下:
C1: P0, P1, P2
C3: P3, P4, P5
在这个过程中,StickyAssignor
尽量保持C1
和C3
的分区分配不变,只是将C2
的分区重新分配给其他消费者。
新消费者加入:现在假设有一个新消费者C4
加入了消费者组,StickyAssignor
会尝试保持现有的分区分配不变,并将分区尽量均匀地分配给所有消费者。新的分配可能如下:
C1: P0, P1
C3: P4, P5
C4: P2, P3
在这个过程中,StickyAssignor
保持了C1
和C3
的分区不变,并将C2
的分区重新分配给C4
。
通过这个例子,我们可以看到StickyAssignor
的分配策略:
1、尽量保持现有的分区分配不变。
2、当消费者组成员变化时,尽量最小化分区在消费者之间的移动。
3、尽量保持分区分配的平衡性。
这种策略的好处是减少了重平衡带来的影响,提高了分区分配的稳定性,减少了因分区移动带来的数据重新加载和处理的开销。
以下是配置StickyAssignor
的代码示例:
import org.apache.kafka.clients.consumer.ConsumerConfig;
import org.apache.kafka.clients.consumer.KafkaConsumer;import java.util.Properties;public class StickyAssignorExample {public static void main(String[] args) {Properties props = new Properties();props.put(ConsumerConfig.BOOTSTRAP_SERVERS_CONFIG, "localhost:9092");props.put(ConsumerConfig.GROUP_ID_CONFIG, "example-group");props.put(ConsumerConfig.KEY_DESERIALIZER_CLASS_CONFIG, "org.apache.kafka.common.serialization.StringDeserializer");props.put(ConsumerConfig.VALUE_DESERIALIZER_CLASS_CONFIG, "org.apache.kafka.common.serialization.StringDeserializer");// 设置分区分配策略为 StickyAssignorprops.put(ConsumerConfig.PARTITION_ASSIGNMENT_STRATEGY_CONFIG, "org.apache.kafka.clients.consumer.StickyAssignor");KafkaConsumer<String, String> consumer = new KafkaConsumer<>(props);// 订阅主题consumer.subscribe(List.of("example-topic"));// 消费消息的逻辑// ...}
}
或者在配置中进行指定
group.id=my-consumer-group
partition.assignment.strategy=org.apache.kafka.clients.consumer.StickyAssignor
【2】增加session.timeout.ms
和heartbeat.interval.ms
:增加session.timeout.ms
和heartbeat.interval.ms
的值,这样可以减少消费者因为心跳超时而被认为失效,从而触发重平衡。
1、session.timeout.ms
是消费者与Kafka broker
之间的会话超时时间。如果在这个时间内Kafka broker
没有收到某个消费者的心跳,broker
就会认为该消费者已经失效,并触发重平衡。
2、heartbeat.interval.ms
是消费者发送心跳给Kafka broker
的时间间隔。心跳是消费者向broker
表示自己仍然活跃的方式。
session.timeout.ms=30000
heartbeat.interval.ms=3000
3、heartbeat.interval.ms
的值通常要远小于session.timeout.ms
的值。这样可以确保在会话超时之前,消费者有多次机会发送心跳。一般建议session.timeout.ms
至少是heartbeat.interval.ms
的10
倍,以确保有足够的时间进行多次心跳尝试。
【3】合理配置消费者组:确保消费者组中的消费者数量稳定,避免频繁地增加或减少消费者。尽量在低峰期进行消费者的添加或移除操作。
【4】优化消费者性能:提高消费者的处理能力,确保消费者能够及时处理消息,避免因为处理延迟导致的重平衡。使用异步处理或批量处理来提高消费者的吞吐量。
【5】监控和报警:实时监控Kafka
集群和消费者组的状态,设置报警机制,当检测到重平衡风险时,及时采取措施。
【6】使用静态成员Static Membership
:Kafka 2.3
及以上版本支持静态成员功能,可以通过配置group.instance.id
来减少重平衡的频率。
group.instance.id
是Kafka 2.4.0
引入的一个配置项,用于为每个消费者实例指定一个唯一的标识符。当消费者组中的消费者具有唯一的group.instance.id
时,Kafka
可以更智能地处理消费者组成员的变化,从而减少不必要的重平衡。
静态成员:通过配置group.instance.id
,消费者实例变成了“静态成员”,即使它们暂时断开连接,Kafka
也会保留它们的成员身份。这与传统的动态成员(没有group.instance.id
)不同,动态成员在断开连接后会被移除,从而触发重平衡。
group.id=my-consumer-group
group.instance.id=consumer-instance-1
【7】调整rebalance.timeout.ms
:增加rebalance.timeout.ms
的值,确保消费者有足够的时间完成重平衡过程,避免因超时导致的频繁重平衡。
消费者Rebalance分区分配策略
主要包含四种relalance
策略:RangeAssignor
(范围分配策略),RoundRobinAssignor
(轮询分配策略),StickyAssignor
(粘性分配策略),CooperativeStickyAssignor
(协作粘性分配策略),之前已经讲过两个,这里聊聊剩下的两个
RoundRobinAssignor
(轮询分配策略)
RoundRobinAssignor
采用轮询的方式将分区分配给消费者。它会将所有分区和消费者按照字典顺序排序,然后依次将每个分区分配给下一个消费者,直到所有分区都被分配完毕。
CooperativeStickyAssignor
(协作粘性分配策略)
CooperativeStickyAssignor
是StickyAssignor
的改进版本,它引入了协作重平衡的概念,使得重平衡过程更加平滑,减少了重平衡期间的停顿时间。
二、Rebalance 过程
第一阶段:选择"组协调器"
组协调器GroupCoordinator
:每个consumer group
都会选择一个broker
作为自己的组协调器coordinator
,负责监控这个消费组里的所有消费者的心跳,以及判断是否宕机,然后开启消费者rebalance
。
consumer group
中的每个consumer
启动时会向kafka
集群中的某个节点发送FindCoordinatorRequest
请求来查找对应的组协调器GroupCoordinator
,并跟其建立网络连接。
组协调器选择方式:consumer
消费的offset
要提交到__consumer_offsets
的哪个分区,这个分区leader
对应的broker
就是这个consumer group
的coordinator
第二阶段:加入消费组JOIN GROUP
在成功找到消费组所对应的GroupCoordinator
之后就进入加入消费组的阶段,在此阶段的消费者会向GroupCoordinator
发送JoinGroupRequest
请求,并处理响应。然后GroupCoordinator
从一个consumer group
中选择第一个加入group
的consumer
作为leader
(消费组协调器),把consumer group
情况发送给这个leader
,接着这个leader
会负责制定分区方案。
第三阶段:SYNC GROUP
consumer leader
通过给GroupCoordinator
发送SyncGroupRequest
,接着GroupCoordinator
就把分区方案下发给各个consumer
,他们会根据指定分区的leader broker
进行网络连接以及消息消费。
相关文章:

消费者Rebalance机制
优质博文:IT-BLOG-CN 一、消费者Rebalance机制 在Apache Kafka中,消费者组 Consumer Group会在以下几种情况下发生重新平衡Rebalance: 【1】消费者加入或离开消费者组: 当一个新的消费者加入消费者组或一个现有的消费者离开消费…...
消息队列介绍
一、ActiveMQ 优点:性能单台(6000)成熟,已经在很多公司得到应用。各种协议支持好,有多个语言的成熟客户端 缺点:性能较弱,缺乏大规模吞吐的场景的应用,有江河日下之感 二、RabbitMQ…...
告别@Value,Spring Boot 3.3更优雅的配置注入方案
在Spring Boot的早期版本中,我们常使用Value注解来注入配置文件中的属性值。然而,这种方式虽然简单直接,却存在一些局限,比如它只能注入基本类型的值,并且需要显式地在每个需要注入的字段上使用注解。随着Spring Boot的…...

甲虫身体图像分割系统源码&数据集分享
甲虫身体图像分割系统源码&数据集分享 [yolov8-seg-EfficientRepBiPAN&yolov8-seg-C2f-FocusedLinearAttention等50全套改进创新点发刊_一键训练教程_Web前端展示] 1.研究背景与意义 项目参考ILSVRC ImageNet Large Scale Visual Recognition Challen…...

Qt - QMenu
QMenu 1、menu转string输出 //GlobalEnum.h #include <QObject> #include <QMetaEnum> class GlobalEnum : public QObject {Q_OBJECT public:EnumTest();enum Enum_Test{ZhangSan 0,WangWu,};Q_ENUM(Enum_Test) };#define EnumToString(e) \ QMetaEnum::fromTy…...

舵机驱动详解(模拟/数字 STM32)
目录 一、介绍 二、模块原理 1.舵机驱动原理 2.引脚描述 三、程序设计 main.c文件 servo.h文件 servo.c文件 四、实验效果 五、资料获取 项目分享 一、介绍 舵机(Servo)是在程序的控制下,在一定范围内连续改变输出轴角度并保持的电机系统。即舵机只支持…...

dvwa:文件包含、文件上传
文件包含 本地文件包含(敏感信息泄露)和远程文件包含(命令执行) 本地文件包含一般包含一些本地的敏感文件,如:/etc/passwd或/etc/shadow等 远程文件包含能使得服务器代码执行,如包含黑客vps的…...
基于 C# .NET Framework 4.0 开发实现 WCF 服务实例详解(二)——实现Windows服务内嵌WCF服务
目录 引言 1. 创建一个新的Windows服务项目 2. 添加WCF服务 2.1 添加服务接口和实现 2.2 添加服务配置 3. 实现Windows服务 3.1 修改Service1类 3.2 在项目中添加ServiceInstaller 4. 安装和运行Windows服务 4.1 编译项目 4.2 使用InstallUtil.exe安装服务 …...
【ArcGIS/C#】调用控制台处理代码
代码示例 private static string[] run_conda_process(string command, Action<string> on_msg, CancellationTokenSource cancel){if (string.IsNullOrEmpty(command)){return new string[]{null,ArcGIS.Desktop.Internal.Core.Conda.Resources.Error_Unexpected + &qu…...
06_23 种设计模式之《适配器模式》
文章目录 一、适配器模式基础知识实例 一、适配器模式基础知识 适配器模式定义:将一个类的接口转换成客户希望的另一个接 口。适配器模式使得原本由于接口不兼容而不能一起工作的那些类可 以一起工作。 Client:客户端,调用自已需要的领域接口…...
Go语言--快速入门
Go语言特点 我们先看一下简单的Go语言程序 package mainimport "fmt"func main() { // 错误,{ 不能在单独的行上fmt.Println("Hello, World!") }我们可以看到外型非常像我们的JAVA,但是不需要;作为结尾,…...

京东云主机怎么用?使用京东云服务器建网站(图文教程)
京东云主机怎么用?非常简单,本文京东云服务器网jdyfwq.com使用以使用京东云服务器搭建WordPress博客网站为例,来详细说下京东云主机的使用方法。使用京东云服务器快速搭建WordPress网站教程,3分钟基于应用镜像一键搞定,…...
Linux 基础入门操作-实验七 进程的介绍
实验七 进程的介绍 7.1 进程基础概念 Linux进程在内存中包含三部分数据:码段、堆栈段和数据段。代码段存放了程序的代码。代码段可以为机器中运行同一程序的数个进程共享。堆栈段存放的是子程序的返回地址、子程序的参数及程序的局部变量。而数据段则存放程序的全…...

SQL进阶技巧:SQL中的正则表达式应用?
目录 0 引言 1. 正则表达式函数 1.1 regexp_extract 1.2 regexp_replace 1.3 regexp_like 2. 在WHERE子句中使用正则表达式 3. 在GROUP BY中使用正则表达式 4. 性能考虑 5. 高级正则表达式技巧 5.1 使用正则表达式进行数据清洗 5.2 使用正则表达式处理JSON 6. 正则…...

算法数组面试理论
数组是存放在连续内存空间内的相同类型数据的集合 (所以在删除添加元素的时候需要移动其他的元素的地址) 数组的元素是不能删除的,只能覆盖。(因为内存地址是连续的,所以不能删除。或者可以这么理解:在一…...

ASP.NET Zero是什么?适合哪些业务场景?
一、ASP.NET Zero是什么? ASP.NET Zero 是一个基于 ASP.NET Boilerplate (ABP) 框架的模板项目,它提供了预建的页面和强大的基础设施架构,以便开发者能够快速开发应用层。它的特点包括但不限于: 多合一解决方案:提供多…...

获取期货股票分钟级别数据以及均线策略
【数据获取】 银河金融数据库(yinhedata.com) 能够获取国内外金融股票、期货历史行情数据,包含各分钟级别。 【搭建策略】 均线策略作为一种广泛应用于股票、期货等市场的技术分析方法,凭借其简单易懂、操作性强等特点…...
入门篇-1 数据结构简介
数据结构简介 在计算机科学中,数据结构是指组织、存储和管理数据的方式,它使得数据可以被高效地访问和修改。数据结构是计算机程序设计和算法分析中的一个重要概念,因为它们直接影响到程序的执行效率和内存使用。 1. 什么是数据结构&#x…...

Anaconda安装
1.进入Anaconda官网 2.填写邮箱信息 3.在邮箱消息中获取下载链接 4.进入下载页面,选择合适版本下载 5.进入Anaconda安装界面 6.点击“I agree” 7.选择个人即可“Just Me” 8.选择文件安装路径 9.允许创建快捷方式 10.等待下载 11.完成安装...

Elasticsearch学习笔记(六)使用集群令牌将新加点加入集群
随着业务的增长,陆续会有新的节点需要加入集群。当我们在集群中的某个节点上使用命令生成令牌时会出现报错信息。 # 生成令牌 /usr/share/elasticsearch/bin/elasticsearch-create-enrollment-token -s node出现报错信息: Unable to create enrollment…...

测试微信模版消息推送
进入“开发接口管理”--“公众平台测试账号”,无需申请公众账号、可在测试账号中体验并测试微信公众平台所有高级接口。 获取access_token: 自定义模版消息: 关注测试号:扫二维码关注测试号。 发送模版消息: import requests da…...

【Python】 -- 趣味代码 - 小恐龙游戏
文章目录 文章目录 00 小恐龙游戏程序设计框架代码结构和功能游戏流程总结01 小恐龙游戏程序设计02 百度网盘地址00 小恐龙游戏程序设计框架 这段代码是一个基于 Pygame 的简易跑酷游戏的完整实现,玩家控制一个角色(龙)躲避障碍物(仙人掌和乌鸦)。以下是代码的详细介绍:…...
线程同步:确保多线程程序的安全与高效!
全文目录: 开篇语前序前言第一部分:线程同步的概念与问题1.1 线程同步的概念1.2 线程同步的问题1.3 线程同步的解决方案 第二部分:synchronized关键字的使用2.1 使用 synchronized修饰方法2.2 使用 synchronized修饰代码块 第三部分ÿ…...
Objective-C常用命名规范总结
【OC】常用命名规范总结 文章目录 【OC】常用命名规范总结1.类名(Class Name)2.协议名(Protocol Name)3.方法名(Method Name)4.属性名(Property Name)5.局部变量/实例变量(Local / Instance Variables&…...

定时器任务——若依源码分析
分析util包下面的工具类schedule utils: ScheduleUtils 是若依中用于与 Quartz 框架交互的工具类,封装了定时任务的 创建、更新、暂停、删除等核心逻辑。 createScheduleJob createScheduleJob 用于将任务注册到 Quartz,先构建任务的 JobD…...
在鸿蒙HarmonyOS 5中使用DevEco Studio实现录音机应用
1. 项目配置与权限设置 1.1 配置module.json5 {"module": {"requestPermissions": [{"name": "ohos.permission.MICROPHONE","reason": "录音需要麦克风权限"},{"name": "ohos.permission.WRITE…...
全面解析各类VPN技术:GRE、IPsec、L2TP、SSL与MPLS VPN对比
目录 引言 VPN技术概述 GRE VPN 3.1 GRE封装结构 3.2 GRE的应用场景 GRE over IPsec 4.1 GRE over IPsec封装结构 4.2 为什么使用GRE over IPsec? IPsec VPN 5.1 IPsec传输模式(Transport Mode) 5.2 IPsec隧道模式(Tunne…...
力扣-35.搜索插入位置
题目描述 给定一个排序数组和一个目标值,在数组中找到目标值,并返回其索引。如果目标值不存在于数组中,返回它将会被按顺序插入的位置。 请必须使用时间复杂度为 O(log n) 的算法。 class Solution {public int searchInsert(int[] nums, …...

AI病理诊断七剑下天山,医疗未来触手可及
一、病理诊断困局:刀尖上的医学艺术 1.1 金标准背后的隐痛 病理诊断被誉为"诊断的诊断",医生需通过显微镜观察组织切片,在细胞迷宫中捕捉癌变信号。某省病理质控报告显示,基层医院误诊率达12%-15%,专家会诊…...

面向无人机海岸带生态系统监测的语义分割基准数据集
描述:海岸带生态系统的监测是维护生态平衡和可持续发展的重要任务。语义分割技术在遥感影像中的应用为海岸带生态系统的精准监测提供了有效手段。然而,目前该领域仍面临一个挑战,即缺乏公开的专门面向海岸带生态系统的语义分割基准数据集。受…...