【JDK17 | 5】Java 17 深入剖析:新的随机数生成器 API
引言
在 Java 17 中,新的随机数生成器 API 作为一个重要特性被引入,旨在提供更灵活和高效的随机数生成方案。新的 API 不仅支持多种生成算法,还改善了随机数生成的性能,适应了现代开发的需求。在本篇文章中,我们将深入探讨这一新特性的用法、优势及实际应用示例。
1. 新的随机数生成器 API 概述
Java 17 引入了 java.util.random 包,提供了一系列新的随机数生成器。新的 API 主要包含两类:
- 随机数生成器(RandomGenerator):提供不同算法的随机数生成器。
- 随机数生成器工厂(RandomGeneratorFactory):用于创建各种类型的随机数生成器。
1.1 随机数生成器接口
新的 RandomGenerator 接口允许开发者指定生成算法。常见的生成算法包括:
- LXM:一种基于线性同余法的高效生成器。
- SplittableRandom:提供高效的分裂随机数生成能力。
2. 新 API 的优势
2.1 性能提升
新的随机数生成器 API 经过优化,能够提供更高效的随机数生成,尤其在多线程环境中表现更加优越。
2.2 灵活性
开发者可以根据具体需求选择适合的随机数生成算法,提供了更大的灵活性。
2.3 简化代码
新的 API 提供了更简单的接口,使得随机数生成的代码更加简洁明了。
3. 实际应用示例
3.1 使用默认随机数生成器
使用默认的随机数生成器生成随机整数:
import java.util.random.RandomGenerator;public class RandomExample {public static void main(String[] args) {RandomGenerator generator = RandomGenerator.getDefault();int randomValue = generator.nextInt(100); // 生成 0 到 99 之间的随机整数System.out.println("随机整数: " + randomValue);}
}
3.2 使用指定算法的随机数生成器
可以使用指定算法的随机数生成器生成随机数:
import java.util.random.RandomGenerator;public class LXMExample {public static void main(String[] args) {RandomGenerator generator = RandomGenerator.of("L128X256MixRandom");int randomValue = generator.nextInt(100); // 生成 0 到 99 之间的随机整数System.out.println("使用 LXM 算法生成的随机整数: " + randomValue);}
}
3.3 生成随机数流
新的 API 允许生成随机数流,适用于需要大量随机数的场景:
import java.util.random.RandomGenerator;
import java.util.stream.IntStream;public class RandomStreamExample {public static void main(String[] args) {RandomGenerator generator = RandomGenerator.getDefault();IntStream randomStream = generator.ints(10, 0, 100); // 生成 10 个 0 到 99 之间的随机整数randomStream.forEach(System.out::println);}
}
4. 最佳实践
4.1 选择合适的随机数生成器
根据应用需求选择合适的随机数生成器算法,确保性能和随机性的平衡。
4.2 避免共享随机数生成器
在多线程环境中,尽量避免共享同一个随机数生成器实例,以免出现竞争条件和性能瓶颈。
4.3 充分测试随机性
在使用随机数生成器时,确保生成的随机数满足应用的随机性要求,必要时进行充分的测试。
5. 小结
Java 17 中的新随机数生成器 API 提供了更高效、灵活的随机数生成解决方案,适应了现代开发的需求。通过合理使用新的 API,开发者能够简化代码,提高性能,满足不同场景下的随机数生成需求。
在下一篇文章中,我们将探索 Java 17 中的外部内存访问 API,展示如何安全地访问外部内存。敬请期待!
相关文章:
【JDK17 | 5】Java 17 深入剖析:新的随机数生成器 API
引言 在 Java 17 中,新的随机数生成器 API 作为一个重要特性被引入,旨在提供更灵活和高效的随机数生成方案。新的 API 不仅支持多种生成算法,还改善了随机数生成的性能,适应了现代开发的需求。在本篇文章中,我们将深入…...
剪切走的照片:高效恢复与预防策略
一、剪切走的照片现象描述 在日常的数字生活中,照片作为记录生活点滴、工作成果的重要载体,其重要性不言而喻。然而,有时我们可能会遇到一种令人头疼的情况:原本打算通过剪切操作将照片移动到另一个位置,却意外地发现…...
基于XGBoost的结核分枝杆菌的耐药性预测研究【多种机器学习】
1. 绪论 目录 1. 绪论 1.1研究背景及意义 1.2国内外研究现状 1.2.1国内研究现状 1.2.2国外研究现状 1.3研究目的 2. 相关技术概念 2.1结核分枝杆菌的耐药性机制 2.2机器学习与系统发育法相结合 2.3XGBoost和随机森林算法的优势和应用 3. 模型设计 3.1数据准备与预…...
【C++差分数组】3229. 使数组等于目标数组所需的最少操作次数|2066
本文涉及知识点 C差分数组 LeetCode3229. 使数组等于目标数组所需的最少操作次数 给你两个长度相同的正整数数组 nums 和 target。 在一次操作中,你可以选择 nums 的任何子数组,并将该子数组内的每个元素的值增加或减少 1。 返回使 nums 数组变为 tar…...
浅谈PyTorch中的DP和DDP
目录 1. 引言2. PyTorch 数据并行(Data Parallel, DP)2.1 DP 的优缺点2.2 DP 实现代码示例 3. PyTorch 分布式数据并行(Distributed Data Parallel, DDP)3.1 DDP 的优缺点3.2 分布式基本概念3.3 DDP 的应用流程3.5 DDP 实现代码示…...
在Windows上利用谷歌浏览器进行视频会议和协作
随着远程工作和在线教育的普及,使用谷歌浏览器在Windows上进行视频会议和协作变得越来越常见。本文将为您提供一个详细的教程,教您如何在Windows上利用谷歌浏览器进行视频会议和协作,同时解决一些常见的问题。(本文由https://goog…...
VMware Fusion 13.6.1 发布下载,修复 4 个已知问题
VMware Fusion 13.6.1 发布下载,修复 4 个已知问题 VMware Fusion 13.6.1 for Mac - 领先的免费桌面虚拟化软件 适用于基于 Intel 处理器和搭载 Apple 芯片的 Mac 的桌面虚拟化软件 请访问原文链接:https://sysin.org/blog/vmware-fusion-13/ 查看最新…...
P9751 [CSP-J 2023] 旅游巴士
P 9751 P9751 P9751 部分分思路 题目要求时间必须是 k k k 的非负整数倍,所以想到了升维。这样就变成了一道分层图最短路的题目。用 BFS 算法可以拿到 A i 0 A_i0 Ai0 的 35 35 35 分。 满分思路 其实部分分的思路已经很接近正解了,想要拿到满…...
【Linux】man手册安装使用
目录 man(manual,手册) 手册安装: 章节区分: 指令参数: 使用场景: 手册内容列表: 手册查看快捷键: 实例: 仍致谢:Linux常用命令大全(手册) – 真正好用的Linux命令在线查询网站 提供的命令查询 在开头先提醒一下:在 man 手册中退出的方法很简单…...
mysql学习教程,从入门到精通,SQL处理重复数据(39)
1、SQL处理重复数据 使用GROUP BY和HAVING子句删除重复数据(以SQL Server为例)”的背景和原理的详细解释: 1.1、背景 在数据库管理中,数据重复是一个常见的问题。重复数据可能由于多种原因产生,如数据录入错误、数据…...
mapbox解决wmts请求乱码问题
贴个群号 WebGIS学习交流群461555818,欢迎大家 事故现场 如图所示,wmts请求全是乱码,看起来像是将一个完整的请求拆成一个一个的字母了,而且控制台打印map.getStyle() 查看该source发现不出异常 解决办法 此类问题就是由于更…...
《C++职场中设计模式的学习与应用:开启高效编程之旅》
在 C职场中,设计模式是提升代码质量、增强程序可维护性和可扩展性的强大武器。掌握并正确应用设计模式,不仅能让你在工作中更加得心应手,还能为你的职业发展增添有力的砝码。那么,如何在 C职场中学习和应用设计模式呢?…...
Maya动画--基础约束
005-基础约束02_哔哩哔哩_bilibili 父子约束 移动圆环,球体会跟着移动,并回到初始的相对位置 不同物体间没有层级关系 明确子物体与父物体间的关系 衣服上的纽扣 法线约束 切线约束 碰到中心时会改变方向...
腾讯云License 相关
腾讯云视立方 License 是必须购买的吗? 若您下载的腾讯云视立方功能模块中,包含直播推流(主播开播和主播观众连麦/主播跨房 PK)、短视频(视频录制编辑/视频上传发布)、终端极速高清和腾讯特效功能模块&…...
开放式耳机什么品牌最好?十大超好用开放式耳机排名!
由于长时间使用传统入耳式耳机可能会对耳道健康带来潜在的负面影响,越来越多的用户倾向于选择开放式耳机,这种设计不侵入耳道。它有助于降低耳内湿度、减少细菌滋生,以及缓解耳道因封闭而过热的不适。但是大部分人还是不知道怎么选择开放式耳…...
基于Zynq SDIO WiFi移植二(支持2.4/5G)
1 SDIO设备识别 经过编译,将移植好的uboot、kernel、rootFS、ramdisk等烧录到Flash中,上电启动,在log中,可看到sdio设备 [ 1.747059] mmc1: queuing unknown CIS tuple 0x01 (3 bytes) [ 1.761842] mmc1: queuing unknown…...
Spring Boot敏感数据动态配置:深入实践与安全性提升
在构建Spring Boot应用的过程中,敏感数据的处理与保护是至关重要的。传统上,这些敏感数据(如数据库密码、API密钥、加密密钥等)可能被硬编码在配置文件中,这不仅增加了泄露的风险,也限制了配置的灵活性和可…...
软考数据库部分 ---- (概念数据库模型,三级模式,两级映像,事物管理)
文章目录 一、概念数据库模型二、结构数据库模型三、三级模式四、两级映像五、关系模式基本术语六、关系模式七、关系的数学定义八、数据定义语言九、SQL访问控制十、视图十一、索引十二、关系模式十三、范式十四、数据库设计十五、事物管理(ACID)十六、…...
AI 概念大杂烩
目录 介绍 数据挖掘 / 机器学习 / 深度学习 一、数据挖掘(Data Mining) 1. 定义 2. 目标 3. 常用算法 二、机器学习(Machine Learning) 1. 定义 2. 目标 3. 常用算法 三、深度学习(Deep Learning࿰…...
Composer和PHP有什么关系
Composer是PHP的一个依赖管理工具,以下是对Composer及其与PHP关系的详细解释: Composer简介 核心功能:Composer的核心思想是“依赖管理”,它能够自动下载和安装项目所依赖的库、框架或插件等。这些依赖项可以是PHP本身的库文件&…...
挑战杯推荐项目
“人工智能”创意赛 - 智能艺术创作助手:借助大模型技术,开发能根据用户输入的主题、风格等要求,生成绘画、音乐、文学作品等多种形式艺术创作灵感或初稿的应用,帮助艺术家和创意爱好者激发创意、提高创作效率。 - 个性化梦境…...
生成xcframework
打包 XCFramework 的方法 XCFramework 是苹果推出的一种多平台二进制分发格式,可以包含多个架构和平台的代码。打包 XCFramework 通常用于分发库或框架。 使用 Xcode 命令行工具打包 通过 xcodebuild 命令可以打包 XCFramework。确保项目已经配置好需要支持的平台…...
Golang 面试经典题:map 的 key 可以是什么类型?哪些不可以?
Golang 面试经典题:map 的 key 可以是什么类型?哪些不可以? 在 Golang 的面试中,map 类型的使用是一个常见的考点,其中对 key 类型的合法性 是一道常被提及的基础却很容易被忽视的问题。本文将带你深入理解 Golang 中…...
VB.net复制Ntag213卡写入UID
本示例使用的发卡器:https://item.taobao.com/item.htm?ftt&id615391857885 一、读取旧Ntag卡的UID和数据 Private Sub Button15_Click(sender As Object, e As EventArgs) Handles Button15.Click轻松读卡技术支持:网站:Dim i, j As IntegerDim cardidhex, …...
可靠性+灵活性:电力载波技术在楼宇自控中的核心价值
可靠性灵活性:电力载波技术在楼宇自控中的核心价值 在智能楼宇的自动化控制中,电力载波技术(PLC)凭借其独特的优势,正成为构建高效、稳定、灵活系统的核心解决方案。它利用现有电力线路传输数据,无需额外布…...
全球首个30米分辨率湿地数据集(2000—2022)
数据简介 今天我们分享的数据是全球30米分辨率湿地数据集,包含8种湿地亚类,该数据以0.5X0.5的瓦片存储,我们整理了所有属于中国的瓦片名称与其对应省份,方便大家研究使用。 该数据集作为全球首个30米分辨率、覆盖2000–2022年时间…...
Cinnamon修改面板小工具图标
Cinnamon开始菜单-CSDN博客 设置模块都是做好的,比GNOME简单得多! 在 applet.js 里增加 const Settings imports.ui.settings;this.settings new Settings.AppletSettings(this, HTYMenusonichy, instance_id); this.settings.bind(menu-icon, menu…...
3403. 从盒子中找出字典序最大的字符串 I
3403. 从盒子中找出字典序最大的字符串 I 题目链接:3403. 从盒子中找出字典序最大的字符串 I 代码如下: class Solution { public:string answerString(string word, int numFriends) {if (numFriends 1) {return word;}string res;for (int i 0;i &…...
精益数据分析(97/126):邮件营销与用户参与度的关键指标优化指南
精益数据分析(97/126):邮件营销与用户参与度的关键指标优化指南 在数字化营销时代,邮件列表效度、用户参与度和网站性能等指标往往决定着创业公司的增长成败。今天,我们将深入解析邮件打开率、网站可用性、页面参与时…...
Reasoning over Uncertain Text by Generative Large Language Models
https://ojs.aaai.org/index.php/AAAI/article/view/34674/36829https://ojs.aaai.org/index.php/AAAI/article/view/34674/36829 1. 概述 文本中的不确定性在许多语境中传达,从日常对话到特定领域的文档(例如医学文档)(Heritage 2013;Landmark、Gulbrandsen 和 Svenevei…...
