当前位置: 首页 > news >正文

基于多种机器学习的酒店客户流失预测模型的研究与实现

文章目录

    • ==有需要本项目的代码或文档以及全部资源,或者部署调试可以私信博主==
      • 项目介绍
      • 实现过程

有需要本项目的代码或文档以及全部资源,或者部署调试可以私信博主

项目介绍

项目背景:
在当今竞争激烈的酒店行业中,预测和防止客户流失对提升酒店运营效率和经济效益具有重要意义。本项目运用多种机器学习算法,结合数据挖掘和分析技术,构建了一个精确的客户流失预测模型。

研究目标:

  1. 通过数据分析揭示影响酒店客户流失的关键因素
  2. 建立准确的客户流失预测模型
  3. 为酒店管理者提供数据支持的决策建议

数据处理与分析:

  1. 数据预处理

    • 缺失值处理:采用均值/众数填充
    • 异常值检测与处理:箱线图法、3σ准则
    • 特征编码:对分类变量进行独热编码
    • 数据标准化:采用StandardScaler进行特征缩放
  2. 探索性数据分析(EDA)

    • 使用多种可视化工具进行数据分析:
      • 热力图:展示特征间相关性
      • 柱状图:显示各特征分布情况
      • 饼图:展示客户流失比例
      • 箱线图:分析数值特征分布特征
    • 通过可视化发现关键影响因素:
      • 客户满意度
      • 消费金额
      • 入住频率
      • 客户投诉情况
  3. 样本不平衡处理

    • 采用SMOTE过采样技术平衡正负样本
    • 通过调整采样比例优化模型性能

模型构建与实现:

  1. 构建多个机器学习模型:

    • XGBoost模型
    • 随机森林模型
    • LightGBM模型
  2. 模型评估指标:

    • 准确率(Accuracy)
    • 精确率(Precision)
    • 召回率(Recall)
    • F1分数
    • AUC-ROC曲线
  3. 模型优化:

    • 网格搜索(Grid Search)优化超参数
    • 交叉验证确保模型稳定性
    • 特征重要性分析,筛选关键特征

创新点:

  1. 综合运用多种集成学习算法,提高预测准确性
  2. 针对样本不平衡问题,创新性地应用SMOTE技术
  3. 构建了完整的特征工程体系

实验结果:

  1. 模型性能比较:

    • XGBoost模型准确率达到87%
    • 随机森林模型准确率达到85%
    • LightGBM模型准确率达到86%
  2. 关键发现:

    • 客户满意度是最重要的预测因素
    • 消费频率与流失风险呈负相关
    • 投诉处理效率显著影响客户留存

应用价值:

  1. 为酒店管理层提供精准的客户流失预警
  2. 帮助制定针对性的客户维系策略
  3. 优化服务流程,提升客户满意度

未来展望:

  1. 引入深度学习模型提升预测精度
  2. 整合实时数据流,实现动态预测
  3. 开发可视化预警系统,提供实时监控

该项目通过综合运用多种机器学习算法和数据分析技术,成功构建了准确的客户流失预测模型,为酒店运营管理提供了有力的决策支持工具。项目的创新性和实用性使其具有较高的推广价值。

本项目数据来源于携程用户一周的访问数据,为保护客户隐私,已经将数据经过了脱敏,和实际商品的订单量、浏览量、转化率等有一些差距,不影响问题的可解性
在这里插入图片描述

在这里插入图片描述

实现过程

在这里插入图片描述在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
从热图中看出:

delta_price1和delta_price2的相关性高达0.93,前者表示用户偏好价格-24小时浏览最多酒店价格,后者表示用户偏好价格-24小时浏览酒店平均价格,说明浏览24小时内浏览最多的酒店价格会影响到浏览酒店的平均价格,这可以理解为众数和平均数的关系。因此可以选择PCA提取一个主成分表示用户价格偏好。

ordernum_oneyear和historyvisit_totalordernum的相关性高达0.93,两者都是表示用户1年内订单数,特征选取时可以只选择其一,这里选择

ordernum_oneyear作为用户年订单数的特征,也可以用PCA降维;

decisionhabit_user和historyvisit_avghotelnum的相关性达到了0.93,前者表示用户决策习惯,后者表示近三个月用户日均访问酒店数。说明决策时间久的用户近三个月访问酒店数的平均影响也越多,反过来也是,访问的酒店越多,该用户决策时间越久。

customer_value_profit和ctrip_profits之间的相关性达到了0.86,前者表示用户近一年的价值,后者也表示用户价值,细分区别在于衡量的时间长度不同,这里也选择PCA提取一个主成分表示用户价值。

consuming_capacity和avgprice之间的相关性达到了0.85,前者表示用户消费能力指数,后者表示酒店平均价格。很明显,消费能力越高,所选择的酒店平均价格大概率也越高。这里选择consuming_capacity来代表用户消费能力特征,也可以考虑用PCA降维综合这两个特征。

在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

该项目对数据不平衡操作进行过采样技术,通过过采样技术之后,模型效果有显著的提升

相关文章:

基于多种机器学习的酒店客户流失预测模型的研究与实现

文章目录 有需要本项目的代码或文档以及全部资源,或者部署调试可以私信博主项目介绍实现过程 有需要本项目的代码或文档以及全部资源,或者部署调试可以私信博主 项目介绍 项目背景: 在当今竞争激烈的酒店行业中,预测和防止客户流…...

Unity实现自定义图集(三)

以下内容是根据Unity 2020.1.0f1版本进行编写的   1、实现编辑器模式下进游戏前Pack全部自定义图集 同Unity的图集一样,Unity的编辑器模式会在进游戏前把全部的SpriteAtlas都打一次图集,如图: 我们也实现这样的效果。 首先需要获取全部的图集路径。因为目前使用的是以.…...

【测开面试真题】

针对地图导航设计测试用例 文章目录 1. selenium 定位元素的方式有几种?2. 自动化测试能够取代人工测试吗?3. 什么是回归测试? 1. selenium 定位元素的方式有几种? 🐧①通过CSS选择器定位;🐧②…...

RelationGraph实现工单进度图——js技能提升

直接上图: 从上图中可以看到整个工单的进度是从【开始】指向【PCB判责】【完善客诉】【PCBA列表】,同时【完善客诉】又可以同时指向【PCB判责】【PCBA列表】,后续各自指向自己的进度。 直接上代码: 1.安装 1.1 Npm 方式 npm …...

针对脚本爬虫攻击的防御策略与实现

随着互联网的发展,网站和应用程序面临着越来越多的自动化攻击,其中包括使用脚本进行的大规模数据抓取,即所谓的“爬虫攻击”。这类攻击不仅影响网站性能,还可能导致敏感数据泄露。本文将探讨如何识别爬虫攻击,并提供一…...

JVM发展历程

JVM发展历程 Sun Classic VM 早在1996年Java1.0版本的时候,Sun公司发布了一款名为sun classic VM的Java虚拟机,它同时也是世界上第一款商用Java虚拟机,JDK1.4时完全被淘汰。这款虚拟机内部只提供解释器。现在还有及时编译器,因此…...

C语言 | Leetcode C语言题解之第470题用Rand7()实现Rand10()

题目&#xff1a; 题解&#xff1a; // The rand7() API is already defined for you. // int rand7(); // return a random integer in the range 1 to 7int rand10() {while(true) {int index (rand7() - 1) * 7 rand7(); if(index < 40) return index % 10 1; } }...

【JavaScript】拷贝对象的几种方式与对比

#工作中拷贝对象是常有的事&#xff0c;我们需要分清楚深浅拷贝&#xff0c;一般来说要做的都是深拷贝&#xff0c;不然会有关联影响# 解构赋值 es6新语法&#xff0c;简洁是简洁&#xff0c;但是需要注意深拷贝只针对第一层 使用方式&#xff1a;{...obj} let stu {name:…...

高防服务器为何有时难以防御CC攻击及其对策

高防服务器通常被用来抵御各种类型的DDoS攻击&#xff0c;包括CC&#xff08;Challenge Collapsar&#xff09;攻击。然而&#xff0c;在某些情况下&#xff0c;即使是配备了高级防护措施的高防服务器也可能难以完全防御CC攻击。本文将探讨导致这一现象的原因&#xff0c;并提供…...

性能测试工具locust —— Python脚本参数化!

1.1.登录用户参数化 在测试过程中&#xff0c;经常会涉及到需要用不同的用户登录操作&#xff0c;可以采用队列的方式&#xff0c;对登录的用户进行参数化。如果数据要保证不重复&#xff0c;则取完不再放回&#xff1b;如可以重复&#xff0c;则取出后再返回队列。 def lo…...

Java中的拦截器、过滤器及监听器

过滤器&#xff08;Filter&#xff09;监听器&#xff08;Listener&#xff09;拦截器&#xff08;Interceptor&#xff09;关注点web请求系统级别参数、对象Action&#xff08;部分web请求&#xff09;如何实现函数回调事件Java反射机制&#xff08;动态代理&#xff09;应用场…...

Nginx 和 Lua 设计黑白名单

使用 Nginx 和 Lua 设计黑白名单机制&#xff0c;借助 Redis 存储 在现代网络应用中&#xff0c;安全性是一个不可忽视的关键因素。应用程序需要能够有效地管理访问权限&#xff0c;以保护其资源不被恶意用户攻击。黑白名单机制是实现访问控制的一种有效方式。本文将详细介绍如…...

【部署篇】Redis-01介绍‌

一、Redis介绍‌ 1、什么是Redis&#xff1f; ‌Redis&#xff0c;英文全称是Remote Dictionary Server&#xff08;远程字典服务&#xff09;&#xff0c;Redis是一个开源的、使用‌ANSI C语言编写的‌Key-Value存储系统&#xff0c;支持网络、可基于内存亦可持久化。‌ 它提…...

R语言的Meta分析【全流程、不确定性分析】方法与Meta机器学习技术应用

Meta分析是针对某一科研问题&#xff0c;根据明确的搜索策略、选择筛选文献标准、采用严格的评价方法&#xff0c;对来源不同的研究成果进行收集、合并及定量统计分析的方法&#xff0c;最早出现于“循证医学”&#xff0c;现已广泛应用于农林生态&#xff0c;资源环境等方面。…...

【text2sql】ReFSQL检索生成框架

论文标题为《ReFSQL: A Retrieval-Augmentation Framework for Text-to-SQL Generation》&#xff0c;发表在 EMNLP 2023 上。ReFSQL框架通过结构增强检索器来获取与当前问题语义和模式结构相似的样本&#xff0c;然后通过对比学习机制来引导模型学习到这些样本的特定知识&…...

美国市场跨平台应用程序本地化流程的特点

为美国市场本地化移动应用程序是为了创造一种自然、直观、与多元化和精通技术的受众文化相关的体验。美国是世界上最大、最具竞争力的应用程序市场之一&#xff0c;用户期望高质量的性能以及在个人层面引起共鸣的内容。这个市场的本地化需要对美国语言、文化和行为有细致入微的…...

STM32 实现 TCP 服务器与多个设备通信

目录 一、引言 二、硬件准备 三、软件准备 四、LWIP 协议栈的配置与初始化 五、创建 TCP 服务器 1.创建 TCP 控制块 2.绑定端口 3. 进入监听状态 4.设置接收回调函数 六、处理多个客户端连接 七、数据处理与通信管理 八、错误处理与资源管理 九、总结 一、引…...

EdgeNAT: 高效边缘检测的 Transformer

EdgeNAT: Transformer for Efficient Edge Detection 介绍了一种名为EdgeNAT的基于Transformer的边缘检测方法。 1. 背景与动机 EdgeNAT预测结果示例。(a, b):来自BSDS500的数据集的输入图像。(c, d):对应的真实标签。(e, f):由EdgeNAT检测到的边缘。(e)显示了由于颜色变化…...

Github优质项目推荐 - 第六期

文章目录 Github优质项目推荐 - 第六期一、【WiFiAnalyzer】&#xff0c;3.4k stars - WiFi 网络分析工具二、【penpot】&#xff0c;33k stars - UI 设计与原型制作平台三、【Inpaint-Anything】&#xff0c;6.4k stars - 修复图像、视频和3D 场景中的任何内容四、【Malware-P…...

力扣21~30题

21题&#xff08;简单&#xff09;&#xff1a; 分析&#xff1a; 按要求照做就好了&#xff0c;这种链表基本操作适合用c写&#xff0c;python用起来真的很奇怪 python代码&#xff1a; # Definition for singly-linked list. # class ListNode: # def __init__(self, v…...

linux之kylin系统nginx的安装

一、nginx的作用 1.可做高性能的web服务器 直接处理静态资源&#xff08;HTML/CSS/图片等&#xff09;&#xff0c;响应速度远超传统服务器类似apache支持高并发连接 2.反向代理服务器 隐藏后端服务器IP地址&#xff0c;提高安全性 3.负载均衡服务器 支持多种策略分发流量…...

以下是对华为 HarmonyOS NETX 5属性动画(ArkTS)文档的结构化整理,通过层级标题、表格和代码块提升可读性:

一、属性动画概述NETX 作用&#xff1a;实现组件通用属性的渐变过渡效果&#xff0c;提升用户体验。支持属性&#xff1a;width、height、backgroundColor、opacity、scale、rotate、translate等。注意事项&#xff1a; 布局类属性&#xff08;如宽高&#xff09;变化时&#…...

连锁超市冷库节能解决方案:如何实现超市降本增效

在连锁超市冷库运营中&#xff0c;高能耗、设备损耗快、人工管理低效等问题长期困扰企业。御控冷库节能解决方案通过智能控制化霜、按需化霜、实时监控、故障诊断、自动预警、远程控制开关六大核心技术&#xff0c;实现年省电费15%-60%&#xff0c;且不改动原有装备、安装快捷、…...

CentOS下的分布式内存计算Spark环境部署

一、Spark 核心架构与应用场景 1.1 分布式计算引擎的核心优势 Spark 是基于内存的分布式计算框架&#xff0c;相比 MapReduce 具有以下核心优势&#xff1a; 内存计算&#xff1a;数据可常驻内存&#xff0c;迭代计算性能提升 10-100 倍&#xff08;文档段落&#xff1a;3-79…...

vue3 定时器-定义全局方法 vue+ts

1.创建ts文件 路径&#xff1a;src/utils/timer.ts 完整代码&#xff1a; import { onUnmounted } from vuetype TimerCallback (...args: any[]) > voidexport function useGlobalTimer() {const timers: Map<number, NodeJS.Timeout> new Map()// 创建定时器con…...

论文解读:交大港大上海AI Lab开源论文 | 宇树机器人多姿态起立控制强化学习框架(一)

宇树机器人多姿态起立控制强化学习框架论文解析 论文解读&#xff1a;交大&港大&上海AI Lab开源论文 | 宇树机器人多姿态起立控制强化学习框架&#xff08;一&#xff09; 论文解读&#xff1a;交大&港大&上海AI Lab开源论文 | 宇树机器人多姿态起立控制强化…...

什么是EULA和DPA

文章目录 EULA&#xff08;End User License Agreement&#xff09;DPA&#xff08;Data Protection Agreement&#xff09;一、定义与背景二、核心内容三、法律效力与责任四、实际应用与意义 EULA&#xff08;End User License Agreement&#xff09; 定义&#xff1a; EULA即…...

使用 Streamlit 构建支持主流大模型与 Ollama 的轻量级统一平台

🎯 使用 Streamlit 构建支持主流大模型与 Ollama 的轻量级统一平台 📌 项目背景 随着大语言模型(LLM)的广泛应用,开发者常面临多个挑战: 各大模型(OpenAI、Claude、Gemini、Ollama)接口风格不统一;缺乏一个统一平台进行模型调用与测试;本地模型 Ollama 的集成与前…...

Go 语言并发编程基础:无缓冲与有缓冲通道

在上一章节中&#xff0c;我们了解了 Channel 的基本用法。本章将重点分析 Go 中通道的两种类型 —— 无缓冲通道与有缓冲通道&#xff0c;它们在并发编程中各具特点和应用场景。 一、通道的基本分类 类型定义形式特点无缓冲通道make(chan T)发送和接收都必须准备好&#xff0…...

如何更改默认 Crontab 编辑器 ?

在 Linux 领域中&#xff0c;crontab 是您可能经常遇到的一个术语。这个实用程序在类 unix 操作系统上可用&#xff0c;用于调度在预定义时间和间隔自动执行的任务。这对管理员和高级用户非常有益&#xff0c;允许他们自动执行各种系统任务。 编辑 Crontab 文件通常使用文本编…...