当前位置: 首页 > news >正文

基于多种机器学习的酒店客户流失预测模型的研究与实现

文章目录

    • ==有需要本项目的代码或文档以及全部资源,或者部署调试可以私信博主==
      • 项目介绍
      • 实现过程

有需要本项目的代码或文档以及全部资源,或者部署调试可以私信博主

项目介绍

项目背景:
在当今竞争激烈的酒店行业中,预测和防止客户流失对提升酒店运营效率和经济效益具有重要意义。本项目运用多种机器学习算法,结合数据挖掘和分析技术,构建了一个精确的客户流失预测模型。

研究目标:

  1. 通过数据分析揭示影响酒店客户流失的关键因素
  2. 建立准确的客户流失预测模型
  3. 为酒店管理者提供数据支持的决策建议

数据处理与分析:

  1. 数据预处理

    • 缺失值处理:采用均值/众数填充
    • 异常值检测与处理:箱线图法、3σ准则
    • 特征编码:对分类变量进行独热编码
    • 数据标准化:采用StandardScaler进行特征缩放
  2. 探索性数据分析(EDA)

    • 使用多种可视化工具进行数据分析:
      • 热力图:展示特征间相关性
      • 柱状图:显示各特征分布情况
      • 饼图:展示客户流失比例
      • 箱线图:分析数值特征分布特征
    • 通过可视化发现关键影响因素:
      • 客户满意度
      • 消费金额
      • 入住频率
      • 客户投诉情况
  3. 样本不平衡处理

    • 采用SMOTE过采样技术平衡正负样本
    • 通过调整采样比例优化模型性能

模型构建与实现:

  1. 构建多个机器学习模型:

    • XGBoost模型
    • 随机森林模型
    • LightGBM模型
  2. 模型评估指标:

    • 准确率(Accuracy)
    • 精确率(Precision)
    • 召回率(Recall)
    • F1分数
    • AUC-ROC曲线
  3. 模型优化:

    • 网格搜索(Grid Search)优化超参数
    • 交叉验证确保模型稳定性
    • 特征重要性分析,筛选关键特征

创新点:

  1. 综合运用多种集成学习算法,提高预测准确性
  2. 针对样本不平衡问题,创新性地应用SMOTE技术
  3. 构建了完整的特征工程体系

实验结果:

  1. 模型性能比较:

    • XGBoost模型准确率达到87%
    • 随机森林模型准确率达到85%
    • LightGBM模型准确率达到86%
  2. 关键发现:

    • 客户满意度是最重要的预测因素
    • 消费频率与流失风险呈负相关
    • 投诉处理效率显著影响客户留存

应用价值:

  1. 为酒店管理层提供精准的客户流失预警
  2. 帮助制定针对性的客户维系策略
  3. 优化服务流程,提升客户满意度

未来展望:

  1. 引入深度学习模型提升预测精度
  2. 整合实时数据流,实现动态预测
  3. 开发可视化预警系统,提供实时监控

该项目通过综合运用多种机器学习算法和数据分析技术,成功构建了准确的客户流失预测模型,为酒店运营管理提供了有力的决策支持工具。项目的创新性和实用性使其具有较高的推广价值。

本项目数据来源于携程用户一周的访问数据,为保护客户隐私,已经将数据经过了脱敏,和实际商品的订单量、浏览量、转化率等有一些差距,不影响问题的可解性
在这里插入图片描述

在这里插入图片描述

实现过程

在这里插入图片描述在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
从热图中看出:

delta_price1和delta_price2的相关性高达0.93,前者表示用户偏好价格-24小时浏览最多酒店价格,后者表示用户偏好价格-24小时浏览酒店平均价格,说明浏览24小时内浏览最多的酒店价格会影响到浏览酒店的平均价格,这可以理解为众数和平均数的关系。因此可以选择PCA提取一个主成分表示用户价格偏好。

ordernum_oneyear和historyvisit_totalordernum的相关性高达0.93,两者都是表示用户1年内订单数,特征选取时可以只选择其一,这里选择

ordernum_oneyear作为用户年订单数的特征,也可以用PCA降维;

decisionhabit_user和historyvisit_avghotelnum的相关性达到了0.93,前者表示用户决策习惯,后者表示近三个月用户日均访问酒店数。说明决策时间久的用户近三个月访问酒店数的平均影响也越多,反过来也是,访问的酒店越多,该用户决策时间越久。

customer_value_profit和ctrip_profits之间的相关性达到了0.86,前者表示用户近一年的价值,后者也表示用户价值,细分区别在于衡量的时间长度不同,这里也选择PCA提取一个主成分表示用户价值。

consuming_capacity和avgprice之间的相关性达到了0.85,前者表示用户消费能力指数,后者表示酒店平均价格。很明显,消费能力越高,所选择的酒店平均价格大概率也越高。这里选择consuming_capacity来代表用户消费能力特征,也可以考虑用PCA降维综合这两个特征。

在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

该项目对数据不平衡操作进行过采样技术,通过过采样技术之后,模型效果有显著的提升

相关文章:

基于多种机器学习的酒店客户流失预测模型的研究与实现

文章目录 有需要本项目的代码或文档以及全部资源,或者部署调试可以私信博主项目介绍实现过程 有需要本项目的代码或文档以及全部资源,或者部署调试可以私信博主 项目介绍 项目背景: 在当今竞争激烈的酒店行业中,预测和防止客户流…...

Unity实现自定义图集(三)

以下内容是根据Unity 2020.1.0f1版本进行编写的   1、实现编辑器模式下进游戏前Pack全部自定义图集 同Unity的图集一样,Unity的编辑器模式会在进游戏前把全部的SpriteAtlas都打一次图集,如图: 我们也实现这样的效果。 首先需要获取全部的图集路径。因为目前使用的是以.…...

【测开面试真题】

针对地图导航设计测试用例 文章目录 1. selenium 定位元素的方式有几种?2. 自动化测试能够取代人工测试吗?3. 什么是回归测试? 1. selenium 定位元素的方式有几种? 🐧①通过CSS选择器定位;🐧②…...

RelationGraph实现工单进度图——js技能提升

直接上图: 从上图中可以看到整个工单的进度是从【开始】指向【PCB判责】【完善客诉】【PCBA列表】,同时【完善客诉】又可以同时指向【PCB判责】【PCBA列表】,后续各自指向自己的进度。 直接上代码: 1.安装 1.1 Npm 方式 npm …...

针对脚本爬虫攻击的防御策略与实现

随着互联网的发展,网站和应用程序面临着越来越多的自动化攻击,其中包括使用脚本进行的大规模数据抓取,即所谓的“爬虫攻击”。这类攻击不仅影响网站性能,还可能导致敏感数据泄露。本文将探讨如何识别爬虫攻击,并提供一…...

JVM发展历程

JVM发展历程 Sun Classic VM 早在1996年Java1.0版本的时候,Sun公司发布了一款名为sun classic VM的Java虚拟机,它同时也是世界上第一款商用Java虚拟机,JDK1.4时完全被淘汰。这款虚拟机内部只提供解释器。现在还有及时编译器,因此…...

C语言 | Leetcode C语言题解之第470题用Rand7()实现Rand10()

题目&#xff1a; 题解&#xff1a; // The rand7() API is already defined for you. // int rand7(); // return a random integer in the range 1 to 7int rand10() {while(true) {int index (rand7() - 1) * 7 rand7(); if(index < 40) return index % 10 1; } }...

【JavaScript】拷贝对象的几种方式与对比

#工作中拷贝对象是常有的事&#xff0c;我们需要分清楚深浅拷贝&#xff0c;一般来说要做的都是深拷贝&#xff0c;不然会有关联影响# 解构赋值 es6新语法&#xff0c;简洁是简洁&#xff0c;但是需要注意深拷贝只针对第一层 使用方式&#xff1a;{...obj} let stu {name:…...

高防服务器为何有时难以防御CC攻击及其对策

高防服务器通常被用来抵御各种类型的DDoS攻击&#xff0c;包括CC&#xff08;Challenge Collapsar&#xff09;攻击。然而&#xff0c;在某些情况下&#xff0c;即使是配备了高级防护措施的高防服务器也可能难以完全防御CC攻击。本文将探讨导致这一现象的原因&#xff0c;并提供…...

性能测试工具locust —— Python脚本参数化!

1.1.登录用户参数化 在测试过程中&#xff0c;经常会涉及到需要用不同的用户登录操作&#xff0c;可以采用队列的方式&#xff0c;对登录的用户进行参数化。如果数据要保证不重复&#xff0c;则取完不再放回&#xff1b;如可以重复&#xff0c;则取出后再返回队列。 def lo…...

Java中的拦截器、过滤器及监听器

过滤器&#xff08;Filter&#xff09;监听器&#xff08;Listener&#xff09;拦截器&#xff08;Interceptor&#xff09;关注点web请求系统级别参数、对象Action&#xff08;部分web请求&#xff09;如何实现函数回调事件Java反射机制&#xff08;动态代理&#xff09;应用场…...

Nginx 和 Lua 设计黑白名单

使用 Nginx 和 Lua 设计黑白名单机制&#xff0c;借助 Redis 存储 在现代网络应用中&#xff0c;安全性是一个不可忽视的关键因素。应用程序需要能够有效地管理访问权限&#xff0c;以保护其资源不被恶意用户攻击。黑白名单机制是实现访问控制的一种有效方式。本文将详细介绍如…...

【部署篇】Redis-01介绍‌

一、Redis介绍‌ 1、什么是Redis&#xff1f; ‌Redis&#xff0c;英文全称是Remote Dictionary Server&#xff08;远程字典服务&#xff09;&#xff0c;Redis是一个开源的、使用‌ANSI C语言编写的‌Key-Value存储系统&#xff0c;支持网络、可基于内存亦可持久化。‌ 它提…...

R语言的Meta分析【全流程、不确定性分析】方法与Meta机器学习技术应用

Meta分析是针对某一科研问题&#xff0c;根据明确的搜索策略、选择筛选文献标准、采用严格的评价方法&#xff0c;对来源不同的研究成果进行收集、合并及定量统计分析的方法&#xff0c;最早出现于“循证医学”&#xff0c;现已广泛应用于农林生态&#xff0c;资源环境等方面。…...

【text2sql】ReFSQL检索生成框架

论文标题为《ReFSQL: A Retrieval-Augmentation Framework for Text-to-SQL Generation》&#xff0c;发表在 EMNLP 2023 上。ReFSQL框架通过结构增强检索器来获取与当前问题语义和模式结构相似的样本&#xff0c;然后通过对比学习机制来引导模型学习到这些样本的特定知识&…...

美国市场跨平台应用程序本地化流程的特点

为美国市场本地化移动应用程序是为了创造一种自然、直观、与多元化和精通技术的受众文化相关的体验。美国是世界上最大、最具竞争力的应用程序市场之一&#xff0c;用户期望高质量的性能以及在个人层面引起共鸣的内容。这个市场的本地化需要对美国语言、文化和行为有细致入微的…...

STM32 实现 TCP 服务器与多个设备通信

目录 一、引言 二、硬件准备 三、软件准备 四、LWIP 协议栈的配置与初始化 五、创建 TCP 服务器 1.创建 TCP 控制块 2.绑定端口 3. 进入监听状态 4.设置接收回调函数 六、处理多个客户端连接 七、数据处理与通信管理 八、错误处理与资源管理 九、总结 一、引…...

EdgeNAT: 高效边缘检测的 Transformer

EdgeNAT: Transformer for Efficient Edge Detection 介绍了一种名为EdgeNAT的基于Transformer的边缘检测方法。 1. 背景与动机 EdgeNAT预测结果示例。(a, b):来自BSDS500的数据集的输入图像。(c, d):对应的真实标签。(e, f):由EdgeNAT检测到的边缘。(e)显示了由于颜色变化…...

Github优质项目推荐 - 第六期

文章目录 Github优质项目推荐 - 第六期一、【WiFiAnalyzer】&#xff0c;3.4k stars - WiFi 网络分析工具二、【penpot】&#xff0c;33k stars - UI 设计与原型制作平台三、【Inpaint-Anything】&#xff0c;6.4k stars - 修复图像、视频和3D 场景中的任何内容四、【Malware-P…...

力扣21~30题

21题&#xff08;简单&#xff09;&#xff1a; 分析&#xff1a; 按要求照做就好了&#xff0c;这种链表基本操作适合用c写&#xff0c;python用起来真的很奇怪 python代码&#xff1a; # Definition for singly-linked list. # class ListNode: # def __init__(self, v…...

VB.net复制Ntag213卡写入UID

本示例使用的发卡器&#xff1a;https://item.taobao.com/item.htm?ftt&id615391857885 一、读取旧Ntag卡的UID和数据 Private Sub Button15_Click(sender As Object, e As EventArgs) Handles Button15.Click轻松读卡技术支持:网站:Dim i, j As IntegerDim cardidhex, …...

《Qt C++ 与 OpenCV:解锁视频播放程序设计的奥秘》

引言:探索视频播放程序设计之旅 在当今数字化时代,多媒体应用已渗透到我们生活的方方面面,从日常的视频娱乐到专业的视频监控、视频会议系统,视频播放程序作为多媒体应用的核心组成部分,扮演着至关重要的角色。无论是在个人电脑、移动设备还是智能电视等平台上,用户都期望…...

理解 MCP 工作流:使用 Ollama 和 LangChain 构建本地 MCP 客户端

&#x1f31f; 什么是 MCP&#xff1f; 模型控制协议 (MCP) 是一种创新的协议&#xff0c;旨在无缝连接 AI 模型与应用程序。 MCP 是一个开源协议&#xff0c;它标准化了我们的 LLM 应用程序连接所需工具和数据源并与之协作的方式。 可以把它想象成你的 AI 模型 和想要使用它…...

Springcloud:Eureka 高可用集群搭建实战(服务注册与发现的底层原理与避坑指南)

引言&#xff1a;为什么 Eureka 依然是存量系统的核心&#xff1f; 尽管 Nacos 等新注册中心崛起&#xff0c;但金融、电力等保守行业仍有大量系统运行在 Eureka 上。理解其高可用设计与自我保护机制&#xff0c;是保障分布式系统稳定的必修课。本文将手把手带你搭建生产级 Eur…...

反射获取方法和属性

Java反射获取方法 在Java中&#xff0c;反射&#xff08;Reflection&#xff09;是一种强大的机制&#xff0c;允许程序在运行时访问和操作类的内部属性和方法。通过反射&#xff0c;可以动态地创建对象、调用方法、改变属性值&#xff0c;这在很多Java框架中如Spring和Hiberna…...

多种风格导航菜单 HTML 实现(附源码)

下面我将为您展示 6 种不同风格的导航菜单实现&#xff0c;每种都包含完整 HTML、CSS 和 JavaScript 代码。 1. 简约水平导航栏 <!DOCTYPE html> <html lang"zh-CN"> <head><meta charset"UTF-8"><meta name"viewport&qu…...

根据万维钢·精英日课6的内容,使用AI(2025)可以参考以下方法:

根据万维钢精英日课6的内容&#xff0c;使用AI&#xff08;2025&#xff09;可以参考以下方法&#xff1a; 四个洞见 模型已经比人聪明&#xff1a;以ChatGPT o3为代表的AI非常强大&#xff0c;能运用高级理论解释道理、引用最新学术论文&#xff0c;生成对顶尖科学家都有用的…...

C++ Visual Studio 2017厂商给的源码没有.sln文件 易兆微芯片下载工具加开机动画下载。

1.先用Visual Studio 2017打开Yichip YC31xx loader.vcxproj&#xff0c;再用Visual Studio 2022打开。再保侟就有.sln文件了。 易兆微芯片下载工具加开机动画下载 ExtraDownloadFile1Info.\logo.bin|0|0|10D2000|0 MFC应用兼容CMD 在BOOL CYichipYC31xxloaderDlg::OnIni…...

C# 求圆面积的程序(Program to find area of a circle)

给定半径r&#xff0c;求圆的面积。圆的面积应精确到小数点后5位。 例子&#xff1a; 输入&#xff1a;r 5 输出&#xff1a;78.53982 解释&#xff1a;由于面积 PI * r * r 3.14159265358979323846 * 5 * 5 78.53982&#xff0c;因为我们只保留小数点后 5 位数字。 输…...

初学 pytest 记录

安装 pip install pytest用例可以是函数也可以是类中的方法 def test_func():print()class TestAdd: # def __init__(self): 在 pytest 中不可以使用__init__方法 # self.cc 12345 pytest.mark.api def test_str(self):res add(1, 2)assert res 12def test_int(self):r…...