当前位置: 首页 > news >正文

信息安全数学基础(29) x^2 + y^2 = p

前言

       方程 x2+y2=p 是一个涉及整数解和素数 p 的二次方程。这个方程在数论和几何中都有重要的意义,特别是在研究圆的整数点和费马大定理的背景下。

一、定义与背景

       方程 x2+y2=p 表示一个平面上的圆,其圆心在原点 (0,0),半径为 p​(当 p>0 时)。然而,在这个上下文中,我们更关心的是方程的整数解,即 x 和 y 都是整数。

二、整数解的存在性

  1. 当 p 为素数时
    • 如果 p=2,则方程变为 x2+y2=2,其整数解为 (x,y)=(1,1),(1,−1),(−1,1),(−1,−1)。
    • 如果 p 是形如 4k+1 的素数(其中 k 是整数),则方程有整数解。这是由费马小定理的一个推论得出的,即存在整数 a 和 b 使得 a2+b2=p。
    • 如果 p 是形如 4k+3 的素数,则方程没有非零整数解。这是由模4的性质得出的,即任何形如 4k+3 的素数在模4下都余3,而两个整数的平方和不可能模4余3(只能是0, 1, 或2)。
  2. 当 p 不是素数时
    • 如果 p 是负数,则方程在实数范围内没有解,因为两个实数的平方和不能是负数。
    • 如果 p 是正合数,则方程可能有也可能没有整数解,这取决于 p 的因数分解。例如,x2+y2=50 有整数解 (x,y)=(5,5),(5,−5),(−5,5),(−5,−5),(7,1),(7,−1),(−7,1),(−7,−1) 等,因为50可以分解为 5×10 或 2×25,而这些因数都有整数平方根。

三、几何意义

       在几何上,方程 x2+y2=p 描述了一个以原点为中心,半径为 p​ 的圆(当 p>0 时)。然而,在这个问题中,我们更关心的是这个圆上的整数点,即满足方程的整数对 (x,y)。

四、数论意义

       在数论中,方程 x2+y2=p 的整数解与费马大定理(Fermat's Last Theorem)有间接的联系。费马大定理断言,对于任何大于2的整数 n,方程 xn+yn=zn 没有正整数解。虽然 x2+y2=p 并不直接涉及 n>2 的情况,但研究这个方程有助于理解整数解在二次方程中的行为,并为更复杂的数论问题提供启示。

五、应用

       方程 x2+y2=p 的整数解在密码学、编码理论和计算机科学中有应用。例如,在密码学中,某些加密算法利用了整数解的稀疏性来增强安全性。在编码理论中,整数解可以用于构建具有特定性质的码字。在计算机科学中,研究这个方程有助于开发更高效的算法来解决相关的计算问题。

总结

       综上所述,方程 x2+y2=p 是一个涉及整数解和素数 p 的重要二次方程。它在数论、几何和应用数学中都有广泛的应用和深入的研究。

 结语  

这个世界就这么不完美

你想得到些什么就不得不失去些什么

!!!

相关文章:

信息安全数学基础(29) x^2 + y^2 = p

前言 方程 x2y2p 是一个涉及整数解和素数 p 的二次方程。这个方程在数论和几何中都有重要的意义,特别是在研究圆的整数点和费马大定理的背景下。 一、定义与背景 方程 x2y2p 表示一个平面上的圆,其圆心在原点 (0,0),半径为 p​(当…...

ChatGPT国内中文版镜像网站整理合集(2024/10/06)

一、GPT中文镜像站 ① yixiaai.com 支持GPT4、4o以及o1,支持MJ绘画 ② chat.lify.vip 支持通用全模型,支持文件读取、插件、绘画、AIPPT ③ AI Chat 支持GPT3.5/4,4o以及MJ绘画 1. 什么是镜像站 镜像站(Mirror Site&#xff…...

图文深入理解Oracle DB Scheduler

值此国庆佳节,深宅家中,闲来无事,就多写几篇博文。今天继续宅继续写。本篇图文深入介绍Oracle DB Scheduler。 Oracle为什么要使Scheduler? 答案就是6个字:简化管理任务。 • Scheduler(调度程序&#x…...

gin如何具体利用Server-Send-Events(SSE)实时推送技术实现消息推送

目录 业务场景 解决方案 1. 轮询 2. WebSocket 3. SSE(Server-Send-Events) 代码实现 总结 业务场景 在抖音、美团等APP中,我们经常会遇到APP内部的消息推送,如关注的人的动态消息推送、点赞评论互动消息推送以及算法推荐消息推送。这些场景都是…...

写端口-tcp udp不同方式发包和接包

最近一直在学习网络编程,今天把 socket部分做一个总结。 Python 的socket库可以实现不同协议不同地址的发包和收包,无奈资料很少,官方例子有限,大神博客很少提及, 经过一番尝试后,总结以下几点用法以便大家…...

计算机的错误计算(一百二十)

摘要 探讨在许多应用中出现的函数 的计算精度问题。 例1. 考虑在许多应用中出现的函数 计算 不妨在Python下计算: 若用下列Rust代码在线计算: fn f(x: f64) -> f64 {(x.exp() - 1.0) / x }fn main() {let result f(0.9e-13);println!("…...

Spring Boot 中使用 JSON Schema 来校验复杂 JSON 数据

​ 博客主页: 南来_北往 系列专栏:Spring Boot实战 在现代软件开发中,尤其是构建 RESTful API 时,处理 JSON 数据已成为一项基本任务。JSON(JavaScript Object Notation)因其轻量级和易于人类阅读的特点&#xff…...

QT实现Opencv图像处理

案例 基于QT的人脸识别 pro文件需要加以下代码 INCLUDEPATH E:/opencv/opencv3.4-qt-intall/install/include INCLUDEPATH E:/opencv/opencv3.4-qt-intall/install/include/opencv INCLUDEPATH E:/opencv/opencv3.4-qt-intall/install/include/opencv2 LIBS E:/opencv/o…...

刚转Mac的新手如何卸载不需要的应用程序

最开始转Mac系统的时候很是苦恼,到底该怎么卸载App啊,App直接拖到废纸篓真的能卸载干净吗,卸载App时会不会留下一些文件残留,慢慢的会不会占满内存,于是我找到了一个免费的卸载工具——XApp。 这是一款Mac应用程序卸载…...

Unity 3d 继承MonoBahaviour的单例

在使用Unity3d开发游戏或做客户端项目时,单例是最常见的模式之一,他简单了类的创建,在代码中可以直接调用。下面是两个例子,代码两种不同类型的单例,一个是基本类的单例基类,不是unity MonoBehaviour的类都…...

grafana version 11.1.0 设置Y轴刻度为1

grafana 版本 # /usr/share/grafana/bin/grafana --version grafana version 11.1.0设置轴 Axis 搜索 Standard options 在"Decimals"中输入0,确保只显示整数...

Elasticsearch的安装与配置

注意:elasticsearch 禁止安装在/root路径下! 1、创建用户组 groupadd elastic 2、创建用户 useradd es -d /home/es -g elastic echo es | passwd es --stdin 3、给新创建的用户进行授权 chown -R es:elastic /home/es chmod -R 775 /home/es 4…...

win0删除 Windows.old

参考:https://blog.csdn.net/xitongzhijia_abc/article/details/126270452 win10如下所示: 打开 设置–>系统—>存储...

常见IDE及其编译器的讲解

IDE 意思是:集成开发环境 常见的IDE有哪些? eg. devC,VS2022,xcode,codeblocks,clion常见编译器有哪些? eg.msvc,gcc,clang微软的底层编译器是msvc苹果的底层编译器是clang IDE编译器特点devC集成了gcc小巧,工具简单&…...

用SQLyog连接mysql提示2058错误

1)在cmd下(必须是这个,不能是gitbash) // step1:修改下数据库 C:\Users\elex>mysql -uroot -p Enter password: **** Welcome to the MySQL monitor. Commands end with ; or \g. Your MySQL connection id is 97 Server version: 8.1.0 MySQL Community Server - GPLCopy…...

Web集群服务-Nginx

1. web服务 1. WEB服务:网站服务,部署并启动了这个服务,你就可以搭建一个网站 2. WEB中间件: 等同于WEB服务 3. 中间件:范围更加广泛,指的负载均衡之后的服务 4. 数据库中间件:数据库缓存,消息对列 2. 极速上手指南 nginx官网: nginx documentation 2.1 配置yum源 vim /etc/…...

获取时隔半个钟的三天

摘要&#xff1a; 今天遇到需求是配送时间&#xff0c;时隔半个钟的排线&#xff01;所以需要拼接时间&#xff01;例如2024-10-08 14&#xff1a;30&#xff0c;2024-10-08 15&#xff1a;00&#xff0c;2024-10-08 15&#xff1a;30 <el-form-item label"配送时间&a…...

构建可以ssh连接的容器镜像

构建可以ssh连接的容器镜像 构建可以通过ssh进行连接容器镜像&#xff0c;实现远程登录容器的目的。 ubuntu ssh容器镜像 你可以使用以下Dockerfile来构建一个可以SSH的容器镜像&#xff1a; FROM ubuntu:20.04MAINTAINER lldhsds# 配置apt国内源 COPY sources.list /etc/a…...

数据库中JOIN的用法?

在数据库中&#xff0c;JOIN 操作用于结合来自两个或多个表的数据&#xff0c;基于它们之间的相关列。JOIN 是关系数据库查询中一个非常重要的功能&#xff0c;允许你从多个表中提取相关的数据。以下是几种常见的 JOIN 类型及其用法&#xff1a; INNER JOIN: 返回两个表中匹配的…...

java项目之纺织品企业财务管理系统源码(springboot+vue+mysql)

风定落花生&#xff0c;歌声逐流水&#xff0c;大家好我是风歌&#xff0c;混迹在java圈的辛苦码农。今天要和大家聊的是一款基于springboot的纺织品企业财务管理系统。项目源码以及部署相关请联系风歌&#xff0c;文末附上联系信息 。 项目简介&#xff1a; 基于spring boot…...

基于ASP.NET+ SQL Server实现(Web)医院信息管理系统

医院信息管理系统 1. 课程设计内容 在 visual studio 2017 平台上&#xff0c;开发一个“医院信息管理系统”Web 程序。 2. 课程设计目的 综合运用 c#.net 知识&#xff0c;在 vs 2017 平台上&#xff0c;进行 ASP.NET 应用程序和简易网站的开发&#xff1b;初步熟悉开发一…...

工程地质软件市场:发展现状、趋势与策略建议

一、引言 在工程建设领域&#xff0c;准确把握地质条件是确保项目顺利推进和安全运营的关键。工程地质软件作为处理、分析、模拟和展示工程地质数据的重要工具&#xff0c;正发挥着日益重要的作用。它凭借强大的数据处理能力、三维建模功能、空间分析工具和可视化展示手段&…...

(二)原型模式

原型的功能是将一个已经存在的对象作为源目标,其余对象都是通过这个源目标创建。发挥复制的作用就是原型模式的核心思想。 一、源型模式的定义 原型模式是指第二次创建对象可以通过复制已经存在的原型对象来实现,忽略对象创建过程中的其它细节。 📌 核心特点: 避免重复初…...

Java多线程实现之Callable接口深度解析

Java多线程实现之Callable接口深度解析 一、Callable接口概述1.1 接口定义1.2 与Runnable接口的对比1.3 Future接口与FutureTask类 二、Callable接口的基本使用方法2.1 传统方式实现Callable接口2.2 使用Lambda表达式简化Callable实现2.3 使用FutureTask类执行Callable任务 三、…...

大学生职业发展与就业创业指导教学评价

这里是引用 作为软工2203/2204班的学生&#xff0c;我们非常感谢您在《大学生职业发展与就业创业指导》课程中的悉心教导。这门课程对我们即将面临实习和就业的工科学生来说至关重要&#xff0c;而您认真负责的教学态度&#xff0c;让课程的每一部分都充满了实用价值。 尤其让我…...

使用 SymPy 进行向量和矩阵的高级操作

在科学计算和工程领域&#xff0c;向量和矩阵操作是解决问题的核心技能之一。Python 的 SymPy 库提供了强大的符号计算功能&#xff0c;能够高效地处理向量和矩阵的各种操作。本文将深入探讨如何使用 SymPy 进行向量和矩阵的创建、合并以及维度拓展等操作&#xff0c;并通过具体…...

HarmonyOS运动开发:如何用mpchart绘制运动配速图表

##鸿蒙核心技术##运动开发##Sensor Service Kit&#xff08;传感器服务&#xff09;# 前言 在运动类应用中&#xff0c;运动数据的可视化是提升用户体验的重要环节。通过直观的图表展示运动过程中的关键数据&#xff0c;如配速、距离、卡路里消耗等&#xff0c;用户可以更清晰…...

20个超级好用的 CSS 动画库

分享 20 个最佳 CSS 动画库。 它们中的大多数将生成纯 CSS 代码&#xff0c;而不需要任何外部库。 1.Animate.css 一个开箱即用型的跨浏览器动画库&#xff0c;可供你在项目中使用。 2.Magic Animations CSS3 一组简单的动画&#xff0c;可以包含在你的网页或应用项目中。 3.An…...

【SSH疑难排查】轻松解决新版OpenSSH连接旧服务器的“no matching...“系列算法协商失败问题

【SSH疑难排查】轻松解决新版OpenSSH连接旧服务器的"no matching..."系列算法协商失败问题 摘要&#xff1a; 近期&#xff0c;在使用较新版本的OpenSSH客户端连接老旧SSH服务器时&#xff0c;会遇到 "no matching key exchange method found"​, "n…...

JavaScript 数据类型详解

JavaScript 数据类型详解 JavaScript 数据类型分为 原始类型&#xff08;Primitive&#xff09; 和 对象类型&#xff08;Object&#xff09; 两大类&#xff0c;共 8 种&#xff08;ES11&#xff09;&#xff1a; 一、原始类型&#xff08;7种&#xff09; 1. undefined 定…...