当前位置: 首页 > news >正文

Anthropic的CEO达里奥·阿莫迪(Dario Amodei)文章传达他对AI未来的乐观展望

  每周跟踪AI热点新闻动向和震撼发展 想要探索生成式人工智能的前沿进展吗?订阅我们的简报,深入解析最新的技术突破、实际应用案例和未来的趋势。与全球数同行一同,从行业内部的深度分析和实用指南中受益。不要错过这个机会,成为AI领域的领跑者。点击订阅,与未来同行! 订阅:https://rengongzhineng.io/

Anthropic的CEO达里奥·阿莫迪(Dario Amodei)最近发表了一篇长达1.5万字的博客文章,旨在传达他对AI未来的乐观展望,尽管他坚称自己并不是一个AI“末日论者”。在这篇文章中,阿莫迪描绘了一个AI技术已经彻底改变世界、风险得到控制、社会繁荣并走向前所未有的丰裕的未来。

阿莫迪对“强大的AI”持非常乐观的态度,预测这种AI最早可能在2026年问世。他所说的“强大AI”不仅比诺贝尔奖得主在生物学、工程学等领域更聪明,还可以解决未解的数学难题、写出“非常优秀的小说”,甚至控制任何想象中的软件或硬件,从工业机器到实验室设备,都在它的掌控范围内。

尽管他承认AI技术的局限性,当前的AI更多是在重复数据模式,而非真正“思考”,但阿莫迪相信,这些问题将很快得到解决。他设想的未来AI可以治疗几乎所有的传染病、消除癌症、治疗基因缺陷,并阻止阿尔茨海默症的早期发展。他甚至预测,未来5到10年内,AI会帮助治愈PTSD、抑郁症、精神分裂症和成瘾等心理疾病,并有可能通过基因筛查预防这些疾病。他还大胆宣称,AI将使人类的平均寿命达到150岁。

然而,阿莫迪的预测在很多方面似乎过于乐观。AI尚未在医学领域带来根本性变革,而他提到的生物医学突破距离现实仍有很长的路要走。即使AI能够帮助减少研发新药的成本和时间,这些药物在临床试验阶段依然可能失败。更不用说,当前的AI在医疗领域还存在诸多偏见和风险,实际应用起来困难重重。

阿莫迪对AI潜力的乐观态度并未止步于医学领域。他相信AI可以解决全球饥饿问题、扭转气候变化,并在5到10年内将撒哈拉以南非洲的人均GDP提高到中国目前的水平。然而,这些说法很容易让人联想到“奇点”(Singularity)运动的追随者们的论调,尽管阿莫迪也承认这些变化需要全球健康、慈善和政治倡导方面的巨大努力。

他在文章中也提到了AI对社会可能带来的负面影响,比如经济结构的重组,以及可能产生的不平等问题。然而,阿莫迪并没有给出具体的解决方案,而是淡化了AI取代人类工作带来的经济冲击。他认为,即使AI能更好地完成某些任务,人们依然会追求成就感和竞争,比如参与研究、创业或追求演员梦。

总结来看,阿莫迪的文章虽然充满了对未来AI的美好想象,但忽视了当前AI面临的许多现实问题和挑战。尤其是在环境影响、财富不平等以及AI偏见等方面,乐观的预测并没有充分考虑AI技术可能带来的复杂后果。有人可能会质疑这篇文章发布的时机,因为有消息称Anthropic正处于筹集数十亿美元风险投资的关键阶段,类似的情况也曾发生在OpenAI CEO Sam Altman发布乐观宣言后。因此,阿莫迪这篇文章或许不仅仅是对未来的展望,背后也可能有商业动机。

相关文章:

Anthropic的CEO达里奥·阿莫迪(Dario Amodei)文章传达他对AI未来的乐观展望

每周跟踪AI热点新闻动向和震撼发展 想要探索生成式人工智能的前沿进展吗?订阅我们的简报,深入解析最新的技术突破、实际应用案例和未来的趋势。与全球数同行一同,从行业内部的深度分析和实用指南中受益。不要错过这个机会,成为AI领…...

Human-M3 多模态姿态估计数据集-初步解读

文章概述(个人总结):该论文重点提出一个用于人体姿态估计的RGB+点云数据集,针对该多模态数据集,作者阐述了数据集的收集、数据标注以及该数据集的特点。并提出了一个简单的多模态3D人体姿态估计算法,对比其他模型,该方法性能较好。最后总结了该数据集和该方法的限制。 …...

python爬虫 - 进阶正则表达式

🌈个人主页:https://blog.csdn.net/2401_86688088?typeblog 🔥 系列专栏:https://blog.csdn.net/2401_86688088/category_12797772.html 目录 前言 一、匹配中文 (一)匹配单个中文字符 (二…...

静态路由和nqa 联动实验

nqa 配置 1 test 断端口 很明显是切换到备机上了...

golang用any类型去接收前端传的数字类型的值,类型断言为float64

在 Go 中,使用 any 类型接收前端传来的数字时,通常会发现其被类型断言为 float64。这是因为在 JSON 解码的过程中,Go 的 encoding/json 包会将数字解析为 float64。但如果你在结构体中指明字段为 int 类型,框架会根据字段类型进行…...

5、Spring Boot 3.x 集成 RabbitMQ

一、前言 本篇主要是围绕着 Spring Boot 3.x 与 RabbitMQ 的集成,这边文章比较简单,RabbitMQ 的集成没有太大的变化,这篇文章主要是为了后续的 RabbitMQ 的动态配置做铺垫。 1、Docker 安装 RabbitMQ 2、Spring Boot 3.x 集成 RabbitMQ二、D…...

ENSP搭建基础网络拓扑图

一、ENSP的基本操作 1、配置网关 进入系统视图与退出 <Huawei>system-view [Huawei]quit 进入G0/0/0接口后配置ip [R1]interface GigabitEthernet 0/0/0 [R1-GigabitEthernet0/0/0]ip address 192.168.1.1 24查询所有接口的ip配置 [R1]display ip interface brief…...

尚硅谷rabbitmq 2024 消息可靠性答疑二 第22节

returnedMessage()只有失败才调用&#xff0c;confirm()成功失败了都会调用&#xff0c;为什么&#xff1f; 在RabbitMQ中&#xff0c;消息的确认和返回机制是为了确保消息的可靠传递和处理。confirm和returnedMessage方法的调用时机和目的不同&#xff0c;因此它们的行为也有…...

在 Ubuntu 上安装 Whisper 支撑环境(ffmpeg、PyTorch)的教程(2024亲测可用)

在 Ubuntu 上安装 Whisper 的教程 以下是如何在 Ubuntu 系统上安装 Whisper 以进行视频转录的详细步骤。 步骤 1&#xff1a;更新系统 首先更新你的 Ubuntu 系统&#xff0c;确保安装最新的软件包&#xff1a; sudo apt update && sudo apt upgrade -y步骤 2&#…...

vue+echarts实现雷达图及刻度标注

文章目录 前言代码实现实现效果总结 前言 最近项目有做数据可视化 大屏 不免再次使用些echarts应用 记录下其中echarts雷达图的实现 代码实现 先上代码 <template><div class"container"><div ref"chart" style"width: 500px; heig…...

【进阶OpenCV】 (9)--摄像头操作--->答题卡识别改分项目

文章目录 项目&#xff1a;答题卡识别改分1. 图片预处理2. 描绘轮廓3. 轮廓近似4. 透视变换5. 阈值处理6. 找每一个圆圈轮廓7. 将每一个圆圈轮廓排序8. 找寻所填答案&#xff0c;比对正确答案8.1 思路8.2 图解8.3 代码体现 9. 计算正确率 总结 项目&#xff1a;答题卡识别改分 …...

实时从TDengine数据库采集数据到Kafka Topic

实时从TDengine数据库采集数据到Kafka Topic 一、认识TDengine二、TDengine Kafka Connector三、什么是 Kafka Connect&#xff1f;四、前置条件五、安装 TDengine Connector 插件六、启动 Kafka七、验证 kafka Connect 是否启动成功八、TDengine Source Connector 的使用九、添…...

Linux -- 初识动静态库

目录 为什么要有库&#xff1f; 静态库 什么是静态库&#xff1f; 特点 优点 缺点 动态库 什么是动态库&#xff1f; 优点 缺点 编译器会选择哪个库&#xff1f; 为什么要有库&#xff1f; 库的存在是为了提高软件开发的效率、促进代码复用以及简化维护工作。通过使用…...

vite 打包前请求接口和打包后的不一致

在使用 Vite 进行项目打包时&#xff0c;如果发现打包前请求接口和打包后的行为不一致&#xff0c;这可能是由于多种原因导致的。以下是一些可能的原因和相应的解决方案&#xff1a; 1. 代理配置问题 开发环境&#xff1a;在开发环境中&#xff0c;Vite 通常使用 vite.config…...

fairseq 安装包python

背景&#xff1a; Collecting fairseq Using cached https://pypi.tuna.tsinghua.edu.cn/packages/d7/0f/b7043b451a97eb9b4cfb1b1e23e567b947d9d7bca542403228bd53b435fe/fairseq-0.12.1.tar.gz (9.6 MB) Installing build dependencies ... done Getting requirements…...

使用Mockaroo生成测试数据

使用Mockaroo生成测试数据 最近在学习【Spring Boot & React】Spring Boot和React教程视频的P51.Generating 1000 students一课中&#xff0c;看到了https://www.mockaroo.com/网站可以用来模拟生成测试数据&#xff0c;觉得还不错&#xff0c;特此记录一下。感觉每次看老…...

使用频率最高的 opencv 基础绘图操作 - python 实现

以下是 opencv-python 基本操作绘制示例&#xff0c;绘制&#xff1a; 1&#xff09;圆&#xff0c;2&#xff09;矩形&#xff0c;3&#xff09;线段&#xff0c;4&#xff09;文本。 安装 opencv-python pip install opencv-python 在图上绘制圆的操作&#xff0c;示例如…...

Python 在Excel中添加数据条

在Excel中添加数据条是一种数据可视化技巧&#xff0c;它通过条形图的形式在单元格内直观展示数值的大小&#xff0c;尤其适合比较同一列或行中各个单元格的数值。这种表示方式可以让大量的数字信息一目了然。本文将介绍如何使用Python在Excel中的指定单元格区域添加数据条。 …...

Unity中搜索不到XR Interaction Toolkit包解决方法

问题&#xff1a; 针对Unity版本2020.3在中PackageManager可能搜素不到XR Interaction Toolkit包 在Package Manager中未显示XR Interaction Toolkit包 解决方法&#xff1a; Package manager左上角&#xff0c;点加号&#xff0c;选择 Add package from git URL..&#xff0c;…...

【前端】JQ验证每个单选按钮是否已经选择

验证每个单选题是否都已经选择&#xff0c;其中每个input中不带name值&#xff0c;直接遍历input[type"radio"]验证 <!DOCTYPE html> <html lang"en"> <head> <meta charset"UTF-8"> <meta name"viewpor…...

【无人机设计与控制】滑模控制、反步控制、传统PID四旋翼无人机轨迹跟踪控制仿真

摘要 本文基于滑模控制、反步控制和传统PID控制&#xff0c;设计了针对四旋翼无人机的轨迹跟踪控制系统。通过对比这三种控制策略在四旋翼无人机轨迹跟踪中的表现&#xff0c;分析了各自的优缺点和适用场景。仿真结果表明&#xff0c;滑模控制具有更强的鲁棒性&#xff0c;反步…...

MongoDB 介绍

一、MongoDB 介绍 MongoDB 是一个开源的、面向文档的数据库管理系统。它采用了灵活的数据模型&#xff0c;以类似 JSON 的文档形式存储数据&#xff0c;具有高可扩展性、高性能和丰富的功能。 主要特点包括&#xff1a; 灵活的数据模型&#xff1a;文档型数据库允许存储不同…...

计算机网络:物理层 —— 物理层概述

文章目录 物理层功能物理层接口特性常见特性 相关概念 物理层&#xff08;Physical Layer&#xff09;是OSI&#xff08;Open Systems Interconnection&#xff09;模型的第一层&#xff0c;负责提供原始比特流传输的服务。它定义了硬件接口的电气、机械、功能和过程特性&#…...

HTTP的工作原理

HTTP&#xff08;Hypertext Transfer Protocol&#xff09;是一种用于在计算机网络上传输超文本数据的应用层协议。它是构成万维网的基础之一&#xff0c;被广泛用于万维网上的数据通信。&#xff08;超文本(Hypertext)是用超链接的方法&#xff0c;将各种不同空间的文字信息组…...

缓存数据减轻服务器压力

问题:不是所有的数据都需要请求后端的 不是所有的数据都需要请求后端的,有些数据是重复的、可以复用的解决方案:缓存 实现思路:每一个分类为一个key,一个可以下面可以有很多菜品 前端是按照分类查询的,所以我们需要通过分类来缓存缓存代码 /*** 根据分类id查询菜品** @pa…...

【自动驾驶】控制算法(十二)横纵向综合控制 | 从理论到实战全面解析

写在前面&#xff1a; &#x1f31f; 欢迎光临 清流君 的博客小天地&#xff0c;这里是我分享技术与心得的温馨角落。&#x1f4dd; 个人主页&#xff1a;清流君_CSDN博客&#xff0c;期待与您一同探索 移动机器人 领域的无限可能。 &#x1f50d; 本文系 清流君 原创之作&…...

Python基础之List列表用法

1、创建列表 names ["张三","李四","王五","Mary"] 2、列表分片 names[1]&#xff1a;获取数组的第2个元素。 names[1:3]&#xff1a;获取数组的第2、第3个元素。包含左侧&#xff0c;不包含右侧。 names[:3]等同于names[0:3]&…...

视觉检测开源库-功能包框架搭建

chapt9/chapt9_ws/src&#xff0c;接着在目录下新建 yolov5_ros2 功能包&#xff0c;并添加相关依赖&#xff0c;完整命令如下&#xff1a; ros2 pkg create yolov5_ros2 --build-type ament_python --dependencies rclpy yolov5 cv_bridge sensor_msgs vision_msgs cv2 --lic…...

pytest的基础入门

pytest判断用例的成功或者失败 pytest识别用例失败时会报AssertionError或者xxxError错误&#xff0c;当捕获异常时pytest无法识别到失败的用例 pytest的fixture夹具 pytest的参数化 #coding:utf-8 import pytestfrom PythonProject.pytest_test.funcs.guess_point import ge…...

(31)非零均值信号的时域分析:均值、方差、与功率

文章目录 前言一、使用MATLAB生成余弦波并画图二、计算信号的均值、方差、与功率三、结果分析 前言 本文对叠加了直流分量的一段整周期余弦信号进行时域分析&#xff0c;使用MATLAB进行信号生成&#xff0c;并计算其均值、方差、与功率。最后给出对计算结果的分析&#xff0c;…...