当前位置: 首页 > news >正文

矩阵等价、向量组等价、线性方程组同解与公共解的关系

矩阵等价

矩阵 A 、 B 等价 ⇔ 两矩阵秩相等 R ( A ) = R ( B ) ⇔ 每个矩阵的行秩等于列秩,两个矩阵的行秩与列秩分别相等 ⇔ 若行满秩则列向量组等价 ⇔ 若列满秩则行向量组等价 \begin{align} 矩阵A、B等价\\ &\Leftrightarrow 两矩阵秩相等R(A)=R(B)\\ &\Leftrightarrow 每个矩阵的行秩等于列秩,两个矩阵的行秩与列秩分别相等\\ &\Leftrightarrow 若行满秩则列向量组等价\\ &\Leftrightarrow 若列满秩则行向量组等价 \end{align} 矩阵AB等价两矩阵秩相等R(A)=R(B)每个矩阵的行秩等于列秩,两个矩阵的行秩与列秩分别相等若行满秩则列向量组等价若列满秩则行向量组等价

向量组等价

向量组 A 、 B 等价 ⇔ A 与 B 可相互线性表示出(两个向量组不同秩一定不等价,同秩也不一定等价) ⇔ 行向量组等价即两个行向量组可以通过行初等变换相互转换 ⇔ 列向量组等价即两个列向量组可以通过列初等变换相互转换 \begin{align} 向量组A、B等价\\ &\Leftrightarrow A与B可相互线性表示出(两个向量组不同秩一定不等价,同秩也不一定等价)\\ &\Leftrightarrow 行向量组等价即两个行向量组可以通过行初等变换相互转换\\ &\Leftrightarrow 列向量组等价即两个列向量组可以通过列初等变换相互转换 \end{align} 向量组AB等价AB可相互线性表示出(两个向量组不同秩一定不等价,同秩也不一定等价)行向量组等价即两个行向量组可以通过行初等变换相互转换列向量组等价即两个列向量组可以通过列初等变换相互转换

线性方程组公共解

线性方程组 A x = ξ 与 B x = η 的公共解即 { A x = ξ B x = η 的解 线性方程组Ax=\xi 与Bx=\eta的公共解即\begin{cases} Ax=\xi\\ Bx=\eta\\ \end{cases}的解 线性方程组Ax=ξBx=η的公共解即{Ax=ξBx=η的解

线性方程组同解

线性方程组 A x = ξ 与 B x = η 同解 ⇔ ( A , ξ ) 可通过行初等变换变为 ( B , η ) ⇔ A 与 B 行向量组等价 ⇒ A 与 B 行等秩 ⇒ A 与 B 等价 \begin{align} 线性方程组Ax=\xi 与Bx=\eta同解\\ &\Leftrightarrow (A,\xi)可通过行初等变换变为(B,\eta)\\ &\Leftrightarrow A与B行向量组等价\\ &\Rightarrow A与B行等秩\\ &\Rightarrow A与B等价\end{align} 线性方程组Ax=ξBx=η同解(A,ξ)可通过行初等变换变为(B,η)AB行向量组等价AB行等秩AB等价

A T A x = 0 与 A x = 0 同解 A k x = 0 与 A x = 0 同解 A n + 1 x = 0 与 A n x = 0 同解 \begin{align} &A^TAx=0与Ax=0同解\\ &A^kx=0与Ax=0同解\\ &A^{n+1}x=0与A^nx=0同解\end{align} ATAx=0Ax=0同解Akx=0Ax=0同解An+1x=0Anx=0同解

相关文章:

矩阵等价、向量组等价、线性方程组同解与公共解的关系

矩阵等价 矩阵 A 、 B 等价 ⇔ 两矩阵秩相等 R ( A ) R ( B ) ⇔ 每个矩阵的行秩等于列秩,两个矩阵的行秩与列秩分别相等 ⇔ 若行满秩则列向量组等价 ⇔ 若列满秩则行向量组等价 \begin{align} 矩阵A、B等价\\ &\Leftrightarrow 两矩阵秩相等R(A)R(B)\\ &\…...

[Linux] Linux 进程程序替换

标题:[Linux] Linux 进程程序替换 个人主页水墨不写bug (图片来源于网络) 目录 O、前言 一、进程程序替换的直观现象(什么是进程程序替换?) 二、进程程序替换的原理 三、进程程序替换的函数&#xff08…...

【Linux系统编程】第三十一弹---深入理解静态库:从零开始制作与高效使用的完全指南

✨个人主页: 熬夜学编程的小林 💗系列专栏: 【C语言详解】 【数据结构详解】【C详解】【Linux系统编程】 目录 1、静态库 1.1、怎么做静态库 1.2、怎么使用静态库 1、静态库 1.1、怎么做静态库 在Linux环境下,通常使用GCC&am…...

FFmpeg 简介及其下载安装步骤

目录 一、FFmpeg 简介 二、FFmpeg 安装步骤 2.1 打开官网 2.2 选择FFmpeg系统版本 2.3 下载FFmpeg压缩包 2.4 将下载好的压缩包进行解压 2.5 设置环境变量 2.5.1 在搜索栏中搜索【环境变量】,然后单击将其打开 2.5.2 找到系统变量中的【Path】,点…...

使用CSS+SVG实现加载动画

使用CSSSVG实现加载动画 效果展示 CSS知识点 SVG元素使用SVG相关CSS属性运用 整体页面布局 <section><div class"box"><div class"loader"><svg><circle cx"40" cy"40" r"40"></circl…...

物联网(IoT)的未来发展:智能互联时代的到来

物联网&#xff08;IoT&#xff09;的未来发展&#xff1a;智能互联时代的到来 物联网&#xff08;IoT&#xff09;正在迅速改变我们与世界互动的方式。无论是智能家居、智慧城市&#xff0c;还是工业自动化&#xff0c;物联网技术通过设备互联、数据采集和智能控制&#xff0…...

斯坦福 CS229 I 机器学习 I 构建大型语言模型 (LLMs)

1. Pretraining -> GPT3 1.1. Task & loss 1.1.1. 训练 LLMs 时的关键点 对于 LLMs 的训练来说&#xff0c;Architecture&#xff08;架构&#xff09;、Training algorithm/loss&#xff08;训练算法/损失函数&#xff09;、Data&#xff08;数据&#xff09;、Evalu…...

Java->排序

目录 一、排序 1.概念 2.常见的排序算法 二、常见排序算法的实现 1.插入排序 1.1直接插入排序 1.2希尔排序(缩小增量法) 1.3直接插入排序和希尔排序的耗时比较 2.选择排序 2.1直接选择排序 2.2堆排序 2.3直接选择排序与堆排序的耗时比较 3.交换排序 3.1冒泡排序…...

linux 大小写转换

var"TM_card_INFo" # 把变量中的第一个字符换成大写 echo ${var^} # 把变量中的所有小写字母&#xff0c;全部替换为大写 echo ${var^^} # 把变量中的第一个字符换成小写 echo ${var,} # 把变量中的所有大写字母&#xff0c;全部替换为小写 echo ${var,,} 参考…...

Linux——传输层协议

目录 一再谈端口号 1端口号范围划分 2两个问题 3理解进程与端口号的关系 二UDP协议 1格式 2特点 3进一步理解 3.1关于UDP报头 3.2关于报文 4基于UDP的应用层协议 三TCP协议 1格式 2TCP基本通信 2.1关于可靠性 2.2TCP通信模式 3超时重传 4连接管理 4.1建立…...

centos系列,yum部署jenkins2.479.1,2024年长期支持版本

centos系列&#xff0c;yum部署jenkins2.479.1&#xff0c;2024年长期支持版本 0、介绍 注意&#xff1a;jenkins建议安装LTS长期支持版本&#xff0c;而不是安装每周更新版本&#xff0c;jenkins安装指定版本 openjdk官网下载 Index of /jenkins/redhat-stable/ | 清华大学开…...

正则表达式-“三剑客”(grep、sed、awk)

1.3正则表达式 正则表达式描述了一种字符串匹配的模式&#xff0c;可以用来检查一个串是否含有某种子串&#xff0c;将匹配的子串替换或者从某个串中取出符号某个条件的子串等&#xff0c;在linux中代表自定义的模式模版&#xff0c;linux工具可以用正则表达式过滤文本。Linux…...

数智时代的新航向:The Open Group 2024生态系统架构·可持续发展年度大会邀您共筑AI数字新时代

在全球可持续发展和数字化转型双重驱动下&#xff0c;企业正面临着前所未有的挑战与机遇。如何在激烈的市场竞争中&#xff0c;实现业务增长的同时&#xff0c;履行社会责任&#xff0c;达成可持续发展的目标&#xff1f;The Open Group 2024生态系统架构可持续发展年度大会将于…...

TensorFlow 的核心概念

TensorFlow 是一个开源的机器学习框架&#xff0c;由 Google 开发和维护。它提供了一个强大的工具集&#xff0c;用于构建和训练各种机器学习模型。 TensorFlow 的核心概念是计算图&#xff08;Computational Graph&#xff09;。计算图由节点&#xff08;Nodes&#xff09;和…...

SpringBoot教程(二十四) | SpringBoot实现分布式定时任务之Quartz(动态新增、修改等操作)

SpringBoot教程&#xff08;二十四&#xff09; | SpringBoot实现分布式定时任务之Quartz&#xff08;动态新增、修改等操作&#xff09; 前言数据库脚本创建需要被调度的方法创建相关实体类创建业务层接口创建业务层实现类控制层类测试结果 前言 我这边的SpringBoot的版本为2…...

Matlab详细学习教程 MATLAB使用教程与知识点总结

Matlab语言教程 章节目录 一、Matlab简介与基础操作 二、变量与数据类型 三、矩阵与数组操作 四、基本数学运算与函数 五、图形绘制与数据可视化 六、控制流与逻辑运算 七、脚本与函数编写 八、数据导入与导出 九、Matlab应用实例分析 一、Matlab简介与基础操作 重点内容知识…...

【ELKB】Kibana使用

搭建好ELKB后访问地址&#xff1a;http://localhost:5601 输入账号密码登录以后 左侧导航有home、Analysis、Enterprise search 、Observability、Security、Management home&#xff1a;首页Analysis&#xff1a;工具来分析及可视化数据Enterprise search&#xff1a;企业级搜…...

ChatGPT免费使用:人工智能在现代社会中的作用

随着人工智能技术的不断发展&#xff0c;越来越多的应用程序和工具开始使用GPT作为其语言模型。但是&#xff0c;这些应用程序和工具是否收费&#xff1f;如果是免费的&#xff0c;那么他们是如何盈利的&#xff1f;在本文中&#xff0c;我们将探讨ChatGPT免费使用的背后原理&a…...

腾讯音乐:从 Elasticsearch 到 Apache Doris 内容库升级,统一搜索分析引擎,成本直降 80%

导读&#xff1a; 为满足更严苛数据分析的需求&#xff0c;腾讯音乐借助 Apache Doris 替代了 Elasticsearch 集群&#xff0c;统一了内容库数据平台的内容搜索和分析引擎。并基于 Doris 倒排索引和全文检索的能力&#xff0c;支持了复杂的自定义标签计算&#xff0c;实现秒级查…...

CubeMX的FreeRTOS学习

一、FreeRTOS的介绍 什么是FreeRTOS&#xff1f; Free即免费的&#xff0c;RTOS的全称是Real Time Operating system,中文就是实时操作系统。 注意&#xff1a;RTOS不是指某一个确定的系统&#xff0c;而是指一类的操作系统。比如&#xff1a;us/OS&#xff0c;FreeRTOS&…...

使用van-uploader 的UI组件,结合vue2如何实现图片上传组件的封装

以下是基于 vant-ui&#xff08;适配 Vue2 版本 &#xff09;实现截图中照片上传预览、删除功能&#xff0c;并封装成可复用组件的完整代码&#xff0c;包含样式和逻辑实现&#xff0c;可直接在 Vue2 项目中使用&#xff1a; 1. 封装的图片上传组件 ImageUploader.vue <te…...

现代密码学 | 椭圆曲线密码学—附py代码

Elliptic Curve Cryptography 椭圆曲线密码学&#xff08;ECC&#xff09;是一种基于有限域上椭圆曲线数学特性的公钥加密技术。其核心原理涉及椭圆曲线的代数性质、离散对数问题以及有限域上的运算。 椭圆曲线密码学是多种数字签名算法的基础&#xff0c;例如椭圆曲线数字签…...

用docker来安装部署freeswitch记录

今天刚才测试一个callcenter的项目&#xff0c;所以尝试安装freeswitch 1、使用轩辕镜像 - 中国开发者首选的专业 Docker 镜像加速服务平台 编辑下面/etc/docker/daemon.json文件为 {"registry-mirrors": ["https://docker.xuanyuan.me"] }同时可以进入轩…...

如何在最短时间内提升打ctf(web)的水平?

刚刚刷完2遍 bugku 的 web 题&#xff0c;前来答题。 每个人对刷题理解是不同&#xff0c;有的人是看了writeup就等于刷了&#xff0c;有的人是收藏了writeup就等于刷了&#xff0c;有的人是跟着writeup做了一遍就等于刷了&#xff0c;还有的人是独立思考做了一遍就等于刷了。…...

3-11单元格区域边界定位(End属性)学习笔记

返回一个Range 对象&#xff0c;只读。该对象代表包含源区域的区域上端下端左端右端的最后一个单元格。等同于按键 End 向上键(End(xlUp))、End向下键(End(xlDown))、End向左键(End(xlToLeft)End向右键(End(xlToRight)) 注意&#xff1a;它移动的位置必须是相连的有内容的单元格…...

Maven 概述、安装、配置、仓库、私服详解

目录 1、Maven 概述 1.1 Maven 的定义 1.2 Maven 解决的问题 1.3 Maven 的核心特性与优势 2、Maven 安装 2.1 下载 Maven 2.2 安装配置 Maven 2.3 测试安装 2.4 修改 Maven 本地仓库的默认路径 3、Maven 配置 3.1 配置本地仓库 3.2 配置 JDK 3.3 IDEA 配置本地 Ma…...

基于matlab策略迭代和值迭代法的动态规划

经典的基于策略迭代和值迭代法的动态规划matlab代码&#xff0c;实现机器人的最优运输 Dynamic-Programming-master/Environment.pdf , 104724 Dynamic-Programming-master/README.md , 506 Dynamic-Programming-master/generalizedPolicyIteration.m , 1970 Dynamic-Programm…...

管理学院权限管理系统开发总结

文章目录 &#x1f393; 管理学院权限管理系统开发总结 - 现代化Web应用实践之路&#x1f4dd; 项目概述&#x1f3d7;️ 技术架构设计后端技术栈前端技术栈 &#x1f4a1; 核心功能特性1. 用户管理模块2. 权限管理系统3. 统计报表功能4. 用户体验优化 &#x1f5c4;️ 数据库设…...

Yolov8 目标检测蒸馏学习记录

yolov8系列模型蒸馏基本流程&#xff0c;代码下载&#xff1a;这里本人提交了一个demo:djdll/Yolov8_Distillation: Yolov8轻量化_蒸馏代码实现 在轻量化模型设计中&#xff0c;**知识蒸馏&#xff08;Knowledge Distillation&#xff09;**被广泛应用&#xff0c;作为提升模型…...

苹果AI眼镜:从“工具”到“社交姿态”的范式革命——重新定义AI交互入口的未来机会

在2025年的AI硬件浪潮中,苹果AI眼镜(Apple Glasses)正在引发一场关于“人机交互形态”的深度思考。它并非简单地替代AirPods或Apple Watch,而是开辟了一个全新的、日常可接受的AI入口。其核心价值不在于功能的堆叠,而在于如何通过形态设计打破社交壁垒,成为用户“全天佩戴…...