当前位置: 首页 > news >正文

C++——AVL树

文章目录

  • 一、AVL树的概念
  • 二、AVL树的实现
    • 1. AVL树的结构
    • 2. AVL树的插⼊
      • 2.1 AVL树插⼊⼀个值的⼤概过程
      • 2.2 平衡因⼦更新
        • 更新原则
        • 更新停止条件
      • 2.3 插⼊结点及更新平衡因⼦的代码实现
    • 3. 旋转
      • 旋转的原则
      • 右单旋
      • 左单旋
      • 左右双旋
      • 右左双旋
    • 4.高度
    • 5.结点个数
    • 6.判断是否是AVL树
    • 7. 中序遍历
    • 8.查找
  • 三、源代码
    • AVL.h
    • test.cpp

一、AVL树的概念

AVL树是最先发明的自平衡⼆叉查找树,AVL是⼀颗空树,或者具备下列性质的⼆叉搜索树:
它的左右子树都是AV树,且左右子树的高度差的绝对值不超过1。
AVL树是⼀颗高度平衡搜索⼆叉树, 通过控制高度差去控制平衡。

  • AVL树得名于它的发明者G. M. Adelson-Velsky和E. M. Landis是两个前苏联的科学家,他们在1962年的论文《An algorithm for the organization of information》中发表了它。
  • AVL树实现这里我们引入⼀个平衡因子(balance factor)的概念,每个结点都有⼀个平衡因子,任何
    结点的平衡因子等于右子树的高度减去左子树的高度,也就是说任何结点的平衡因子等于0/1/-1,
    AVL树并不是必须要平衡因子,但是有了平衡因子可以更方便我们去进行观察和控制树是否平衡, 就像⼀个风向标⼀样。
  • 思考⼀下为什么AVL树是高度平衡搜索⼆叉树,要求高度差不超过1,而不是高度差是0呢?0不是更好的平衡吗?画画图分析我们发现,不是不想这样设计,而是有些情况是做不到高度差是0的。⽐如⼀棵树是2个结点,4个结点等情况下,高度差最好就是1,无法作为高度差是0。
  • AVL树整体结点数量和分布和完全⼆叉树类似,⾼度可以控制在logN ,那么增删查改的效率也可 以控制在O(logN) ,相⽐⼆叉搜索树有了本质的提升。

在这里插入图片描述

在这里插入图片描述

二、AVL树的实现

1. AVL树的结构

#pragma once
#include<iostream>
using namespace std;
template<class K, class V>
struct AVLTreeNode
{// 需要parent指针,后续更新平衡因子可以看到pair<K, V> _kv;AVLTreeNode<K, V>* _left;AVLTreeNode<K, V>* _right;AVLTreeNode<K, V>* _parent;int _bf; // balance factorAVLTreeNode(const pair<K, V>& kv):_kv(kv), _left(nullptr), _right(nullptr), _parent(nullptr), _bf(0){}
};
template<class K, class V>
class AVLTree
{typedef AVLTreeNode<K, V> Node;
public:
private:Node * _root = nullptr;
};

2. AVL树的插⼊

2.1 AVL树插⼊⼀个值的⼤概过程

  • 插⼊⼀个值按⼆叉搜索树规则进⾏插⼊。
  • 新增结点以后,只会影响祖先结点的⾼度,也就是可能会影响部分祖先结点的平衡因⼦,所以更新从新增结点->根结点路径上的平衡因⼦,实际中最坏情况下要更新到根,有些情况更新到中间就可以停⽌了,具体情况我们下⾯再详细分析。
  • 更新平衡因⼦过程中没有出现问题,则插⼊结束。
  • 更新平衡因⼦过程中出现不平衡,对不平衡⼦树旋转,旋转后本质调平衡的同时,本质降低了⼦树的⾼度,不会再影响上⼀层,所以插⼊结束。

2.2 平衡因⼦更新

更新原则
  • 平衡因子 = 右子树高度-左子树高度
  • 只有子树高度变化才会影响当前结点平衡因子
  • 插入结点,会增加高度,所以新增结点在parent的右子树,parent的平衡因子++,新增结点在
    parent的左子树,parent平衡因子 - -
  • parent所在子树的高度是否变化决定了是否会继续往上更新
更新停止条件
  • 更新后parent的平衡因子等于0,更新中parent的平衡因子变化为-1->0 或者 1->0,说明更新前 parent子树⼀边高⼀边低,新增的结点插入在低的那边,插入后parent所在的子树高度不变,不会影响parent的父亲结点的平衡因子,更新结束。
  • 更新后parent的平衡因子等于1 或 -1,更新前更新中parent的平衡因子变化为0->1 或者 0->-1,说明更新前parent子树两边⼀样高,新增的插入结点后,parent所在的子树⼀边高⼀边低,parent所在的子树符合平衡要求,但是高度增加了1,会影响parent的父亲结点的平衡因子,所以要继续向上 更新。
  • 更新后parent的平衡因子等于2 或 -2,更新前更新中parent的平衡因子变化为1->2 或者 -1->-2,说明更新前parent子树⼀边高⼀边低,新增的插入结点在高的那边,parent所在的子树高的那边更高了,破坏了平衡,parent所在的子树不符合平衡要求,需要旋转处理,旋转的⽬标有两个:1、把parent子树旋转平衡。2、降低parent子树的高度,恢复到插入结点以前的高度。所以旋转后也不需要继续往上更新,插入结束。

更新到10结点,平衡因子为2,10所在的子树已经不平衡,需要旋转处理
在这里插入图片描述
更新到中间结点,3为根的子树高度不变,不会影响上⼀层,更新结束

在这里插入图片描述

最坏更新到根停⽌
在这里插入图片描述

2.3 插⼊结点及更新平衡因⼦的代码实现

bool Insert(const pair<K, V>& kv)
{if (_root == nullptr){_root = new Node(kv);return true;}Node* parent = nullptr;Node* cur = _root;while (cur){if (cur->_kv.first < kv.first){parent = cur;cur = cur->_right;}else if (cur->_kv.first > kv.first){parent = cur;cur = cur->_left;}else{return false;}}cur = new Node(kv);if (parent->_kv.first < kv.first){parent->_right = cur;}else{parent->_left = cur;}cur->_parent = parent;while (parent){if (parent->_left == cur){parent->_bf--;}else{parent->_bf++;}if (parent->_bf == 0){break;}else if (parent->_bf == 1 || parent->_bf == -1){//继续向上更新cur = parent;parent = parent->_parent;}else if (parent->_bf == 2 || parent->_bf == -2){//旋转//右单旋if (parent->_bf == -2 && cur->_bf == -1){RotateR(parent);}//左单旋else if (parent->_bf == 2 && cur->_bf == 1){RotateL(parent);}else if (parent->_bf == -2 && cur->_bf == 1){//左右旋RotateLR(parent);}else if (parent->_bf == 2 && cur->_bf == -1){//右左旋RotateRL(parent);}else{assert(false);}break;}else{assert(false);}}return true;
}

3. 旋转

旋转的原则

  1. 保持搜索树的规则
  2. 让旋转的树从不满⾜变平衡,其次降低旋转树的⾼度

旋转总共分为四种,左单旋/右单旋/左右双旋/右左双旋

右单旋

  • 本图1展⽰的是10为根的树,有a/b/c抽象为三棵高度为h的子树(h>=0),a/b/c均符合AVL树的要求。10可能是整棵树的根,也可能是⼀个整棵树中局部的子树的根。这里a/b/c是高度为h的子树,
    是⼀种概括抽象表示,他代表了所有右单旋的场景,实际右单旋形态有很多种,具体图2/图3/图4/ 图5进行了详细描述。
  • 在a子树中插入⼀个新结点,导致a子树的高度从h变成h+1,不断向上更新平衡因子,导致10的平
    衡因子从-1变成-2,10为根的树左右高度差超过1,违反平衡规则。10为根的树左边太高了,需要 往右边旋转,控制两棵树的平衡。
  • 旋转核心步骤,因为5 < b子树的值 < 10,将b变成10的左子树,10变成5的右子树,5变成这棵树新的根,符合搜索树的规则,控制了平衡,同时这棵的高度恢复到了插入之前的h+2,符合旋转原
    则。如果插入之前10整棵树的⼀个局部子树,旋转后不会再影响上⼀层,插入结束了。

图1

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

//右旋
void RotateR(Node* parent)
{Node* subL = parent->_left;Node* subLR = subL->_right;Node* Pparent = parent->_parent;if (subLR){subLR->_parent = parent;}subL->_right = parent;parent->_parent = subL;parent->_left = subLR;if (Pparent == nullptr){_root = subL;subL->_parent = nullptr;}else{if (Pparent->_left == parent){Pparent->_left = subL;}else{Pparent->_right = subL;}subL->_parent = Pparent;}parent->_bf = 0;subL->_bf = 0;}

左单旋

  • 本图6展示的是10为根的树,有a/b/c抽象为三棵高度为h的子树(h>=0),a/b/c均符合AVL树的要
    求。10可能是整棵树的根,也可能是⼀个整棵树中局部的子树的根。这里a/b/c是高度为h的子树,
    是⼀种概括抽象表示,他代表了所有右单旋的场景,实际右单旋形态有很多种,具体跟上⾯左旋类似。
  • 在a子树中插入⼀个新结点,导致a子树的高度从h变成h+1,不断向上更新平衡因子,导致10的平
    衡因子从1变成2,10为根的树左右高度差超过1,违反平衡规则。10为根的树右边太高了,需要往 左边旋转,控制两棵树的平衡。
  • 旋转核心步骤,因为10 < b子树的值 < 15,将b变成10的右子树,10变成15的左子树,15变成这棵树新的根,符合搜索树的规则,控制了平衡,同时这棵的高度恢复到了插入之前的h+2,符合旋转原则。如果插入之前10整棵树的⼀个局部子树,旋转后不会再影响上⼀层,插入结束了。

在这里插入图片描述

//左旋
void RotateL(Node* parent)
{Node* subR = parent->_right;Node* subRL = subR->_left;Node* Pparent = parent->_parent;if (subRL){subRL->_parent = parent;}subR->_left = parent;parent->_parent = subR;parent->_right = subRL;if (Pparent == nullptr){_root = subR;subR->_parent = nullptr;}else{if (Pparent->_left == parent){Pparent->_left = subR;}else{Pparent->_right = subR;}subR->_parent = Pparent;}parent->_bf = 0;subR->_bf = 0;
}

左右双旋

通过图7和图8可以看到,左边高时,如果插入位置不是在a子树,而是插入在b子树,b子树高度从h变成h+1,引发旋转,右单旋无法解决问题,右单旋后,我们的树依旧不平衡。右单旋解决的纯粹的左边高,但是插入在b子树中,10为跟的子树不再是单纯的左边高,对于10是左边高,但是对于5是右边高,需要用两次旋转才能解决,以5为旋转点进行⼀个左单旋,以10为旋转点进行⼀个右单旋,这棵树这棵树就平衡了。

在这里插入图片描述
在这里插入图片描述
图7和图8分别为左右双旋中h=0和h=1具体场景分析,下面我们将a/b/c子树抽象为高度h的AVL子树进行分析,另外我们需要把b子树的细节进⼀步展开为8和左子树高度为h-1的e和f子树,因为我们要对b的父亲5为旋转点进行左单旋,左单旋需要动b树中的左子树。b子树中新增结点的位置不同,平衡因子更新的细节也不同,通过观察8的平衡因子不同,这里我们要分三个场景讨论。

  • 场景1:h >= 1时,新增结点插⼊在e子树,e子树高度从h-1变为h并不断更新8->5->10平衡因子,引发旋转,其中8的平衡因子为-1,旋转后8和5平衡因子为0,10平衡因子为1。
  • 场景2:h >=1时,新增结点插⼊在f子树,f子树高度从h-1变为h并不断更新8->5->10平衡因子,引发旋转,其中8的平衡因子为1,旋转后8和10平衡因子为0,5平衡因子为-1。
  • 场景3:h == 0时,a/b/c都是空树,b⾃⼰就是⼀个新增结点,不断更新5->10平衡因子,引发旋转,其中8的平衡因子为0,旋转后8和10和5平衡因子均为0。
    在这里插入图片描述
//左右旋
void RotateLR(Node* parent)
{//subL subLR parentNode* subL = parent->_left;Node* subLR = subL->_right;int bf = subLR->_bf;RotateL(subL);RotateR(parent);if (bf == 0){subL->_bf = 0;subLR->_bf = 0;parent->_bf = 0;}else if (bf == 1){subL->_bf = -1;subLR->_bf = 0;parent->_bf = 0;}else if (bf == -1){subL->_bf = 0;subLR->_bf = 0;parent->_bf = 1;}else{assert(false);}
}

右左双旋

跟左右双旋类似,下⾯我们将a/b/c子树抽象为⾼度h的AVL子树进⾏分析,另外我们需要把b子树的细节进⼀步展开为12和左子树⾼度为h-1的e和f子树,因为我们要对b的⽗亲15为旋转点进⾏右单旋,右单旋需要动b树中的右子树。b子树中新增结点的位置不同,平衡因子更新的细节也不同,通过观察12的平衡因子不同,这⾥我们要分三个场景讨论。

  • 场景1:h >=1时,新增结点插⼊在e子树,e子树⾼度从h-1变为h并不断更新12->15->10平衡因子,引发旋转,其中12的平衡因子为-1,旋转后10和12平衡因子为0,15平衡因子为1。
  • 场景2:h >=1时,新增结点插⼊在f子树,f子树⾼度从h-1变为h并不断更新12->15->10平衡因子,引发旋转,其中12的平衡因子为1,旋转后15和12平衡因子为0,10平衡因子为-1。
  • 场景3:h ==0时,a/b/c都是空树,b自己就是⼀个新增结点,不断更新15->10平衡因子,引发旋转,其中12的平衡因子为0,旋转后10和12和15平衡因子均为0。

在这里插入图片描述

//右左旋
void RotateRL(Node* parent)
{//parent subRL subRNode* subR = parent->_right;Node* subRL = subR->_left;int bf = subRL->_bf;RotateR(subR);RotateL(parent);if (bf == 0){subR->_bf = 0;subRL->_bf = 0;parent->_bf = 0;}else if (bf == 1){subR->_bf = 0;subRL->_bf = 0;parent->_bf = -1;}else if (bf == -1){subR->_bf = 1;subRL->_bf = 0;parent->_bf = 0;}else{assert(false);}
}

4.高度

//高度
int _Height(Node* root)
{if (root == nullptr){return 0;}int left = _Height(root->_left);int right = _Height(root->_right);return left > right ? left + 1 : right + 1;
}

5.结点个数

//结点个数
int _Size(Node* root)
{if (root == nullptr){return 0;}return _Size(root->_left) + _Size(root->_right) + 1;
}

6.判断是否是AVL树

//判断
bool _IsBalanceTree(Node* root)
{//空树也是AVL树if (root == nullptr){return true;}int leftHeight = _Height(root->_left);int rightHeight = _Height(root->_right);int diff = rightHeight - leftHeight;if (abs(diff) >= 2){cout << root->_kv.first << "高度差异常" << endl;return false;}if (root->_bf != diff){cout << root->_kv.first << "平衡因子异常" << endl;return false;}return _IsBalanceTree(root->_left) && _IsBalanceTree(root->_right);
}

7. 中序遍历

//中序遍历
void _InOrder(Node* root)
{if (root == nullptr){return;}_InOrder(root->_left);cout << root->_kv.first << ":" << root->_kv.second << endl;_InOrder(root->_right);
}

8.查找

Node* Find(const K& key)
{Node* cur = _root;while (cur){if (cur->_kv.first < key){cur = cur->_right;}else if (cur->_kv.first > key){cur = cur->_left;}else{return cur;}}return nullptr;
}

三、源代码

AVL.h

#pragma once
#include <iostream>
#include <assert.h>
using namespace std;template<class K,class V>
struct AVLTreeNode
{AVLTreeNode<K,V>* _left;AVLTreeNode<K,V>* _right;AVLTreeNode<K,V>* _parent;pair<K,V> _kv;int _bf;//节点的平衡因子AVLTreeNode(const pair<K, V>& kv):_left(nullptr),_right(nullptr),_parent(nullptr),_kv(kv),_bf(0){}
};template<class K, class V>
class AVLTree
{typedef AVLTreeNode<K, V> Node;
public:bool Insert(const pair<K, V>& kv){if (_root == nullptr){_root = new Node(kv);return true;}Node* parent = nullptr;Node* cur = _root;while (cur){if (cur->_kv.first < kv.first){parent = cur;cur = cur->_right;}else if (cur->_kv.first > kv.first){parent = cur;cur = cur->_left;}else{return false;}}cur = new Node(kv);if (parent->_kv.first < kv.first){parent->_right = cur;}else{parent->_left = cur;}cur->_parent = parent;while (parent){if (parent->_left == cur){parent->_bf--;}else{parent->_bf++;}if (parent->_bf == 0){break;}else if (parent->_bf == 1 || parent->_bf == -1){//继续向上更新cur = parent;parent = parent->_parent;}else if (parent->_bf == 2 || parent->_bf == -2){//旋转//右单旋if (parent->_bf == -2 && cur->_bf == -1){RotateR(parent);}//左单旋else if (parent->_bf == 2 && cur->_bf == 1){RotateL(parent);}else if (parent->_bf == -2 && cur->_bf == 1){//左右旋RotateLR(parent);}else if (parent->_bf == 2 && cur->_bf == -1){//右左旋RotateRL(parent);}else{assert(false);}break;}else{assert(false);}}return true;}//右旋void RotateR(Node* parent){Node* subL = parent->_left;Node* subLR = subL->_right;Node* Pparent = parent->_parent;if (subLR){subLR->_parent = parent;}subL->_right = parent;parent->_parent = subL;parent->_left = subLR;if (Pparent == nullptr){_root = subL;subL->_parent = nullptr;}else{if (Pparent->_left == parent){Pparent->_left = subL;}else{Pparent->_right = subL;}subL->_parent = Pparent;}parent->_bf = 0;subL->_bf = 0;}//左旋void RotateL(Node* parent){Node* subR = parent->_right;Node* subRL = subR->_left;Node* Pparent = parent->_parent;if (subRL){subRL->_parent = parent;}subR->_left = parent;parent->_parent = subR;parent->_right = subRL;if (Pparent == nullptr){_root = subR;subR->_parent = nullptr;}else{if (Pparent->_left == parent){Pparent->_left = subR;}else{Pparent->_right = subR;}subR->_parent = Pparent;}parent->_bf = 0;subR->_bf = 0;}//左右旋void RotateLR(Node* parent){//subL subLR parentNode* subL = parent->_left;Node* subLR = subL->_right;int bf = subLR->_bf;RotateL(subL);RotateR(parent);if (bf == 0){subL->_bf = 0;subLR->_bf = 0;parent->_bf = 0;}else if (bf == 1){subL->_bf = -1;subLR->_bf = 0;parent->_bf = 0;}else if (bf == -1){subL->_bf = 0;subLR->_bf = 0;parent->_bf = 1;}else{assert(false);}}//右左旋void RotateRL(Node* parent){//parent subRL subRNode* subR = parent->_right;Node* subRL = subR->_left;int bf = subRL->_bf;RotateR(subR);RotateL(parent);if (bf == 0){subR->_bf = 0;subRL->_bf = 0;parent->_bf = 0;}else if (bf == 1){subR->_bf = 0;subRL->_bf = 0;parent->_bf = -1;}else if (bf == -1){subR->_bf = 1;subRL->_bf = 0;parent->_bf = 0;}else{assert(false);}}int Height(){return _Height(_root);}int Size(){return _Size(_root);}bool IsBalanceTree(){return _IsBalanceTree(_root);}void InOrder(){_InOrder(_root);cout << endl;}Node* Find(const K& key){Node* cur = _root;while (cur){if (cur->_kv.first < key){cur = cur->_right;}else if (cur->_kv.first > key){cur = cur->_left;}else{return cur;}}return nullptr;}private://高度int _Height(Node* root){if (root == nullptr){return 0;}int left = _Height(root->_left);int right = _Height(root->_right);return left > right ? left + 1 : right + 1;}//结点个数int _Size(Node* root){if (root == nullptr){return 0;}return _Size(root->_left) + _Size(root->_right) + 1;}//判断bool _IsBalanceTree(Node* root){//空树也是AVL树if (root == nullptr){return true;}int leftHeight = _Height(root->_left);int rightHeight = _Height(root->_right);int diff = rightHeight - leftHeight;if (abs(diff) >= 2){cout << root->_kv.first << "高度差异常" << endl;return false;}if (root->_bf != diff){cout << root->_kv.first << "平衡因子异常" << endl;return false;}return _IsBalanceTree(root->_left) && _IsBalanceTree(root->_right);}//中序遍历void _InOrder(Node* root){if (root == nullptr){return;}_InOrder(root->_left);cout << root->_kv.first << ":" << root->_kv.second << endl;_InOrder(root->_right);}private:Node* _root = nullptr;
};

test.cpp

//#include "a.h"
#include "AVL.h"
#include <vector>void test01()
{AVLTree<int, int> t;/*pair<int, int> p(1, 2);cout << p.first << " " << p.second << endl;t.Insert(p);t.Insert({1,1});*/int a[] = { 16, 3, 7, 11, 9, 26, 18, 14, 15 };//int a[] = { 4, 2, 6, 1, 3, 5, 15, 7, 16, 14 };for (auto e : a){t.Insert({ e, e });}t.InOrder();cout << t.Size() << endl;cout << t.Height() << endl;cout << t.IsBalanceTree() << endl;
}void test02()
{const int N = 1000000;vector<int> v;v.reserve(N);srand((unsigned)time(0));for (size_t i = 0; i < N; i++){v.push_back((int)(rand() + i));}size_t begin2 = clock();AVLTree<int, int> t;for (auto e : v){t.Insert(make_pair(e, e));}size_t end2 = clock();cout << "Insert:" << end2 - begin2 << endl;cout << t.IsBalanceTree() << endl;cout << "Height:" << t.Height() << endl;cout << "Size:" << t.Size() << endl;size_t begin1 = clock();// 确定在的值/*for (auto e : v){t.Find(e);}*/// 随机值for (size_t i = 0; i < N; i++){t.Find(((int)(rand() + i)));}size_t end1 = clock();cout << "Find:" << end1 - begin1 << endl;
}int main()
{//test01();test02();return 0;
}

相关文章:

C++——AVL树

文章目录 一、AVL树的概念二、AVL树的实现1. AVL树的结构2. AVL树的插⼊2.1 AVL树插⼊⼀个值的⼤概过程2.2 平衡因⼦更新更新原则更新停止条件 2.3 插⼊结点及更新平衡因⼦的代码实现 3. 旋转旋转的原则右单旋左单旋左右双旋右左双旋 4.高度5.结点个数6.判断是否是AVL树7. 中序…...

极市平台 | 无人机相关开源数据集资源汇总

本文来源公众号“极市平台”&#xff0c;仅用于学术分享&#xff0c;侵权删&#xff0c;干货满满。 原文链接&#xff1a;无人机相关开源数据集资源汇总 本文介绍几个无人机有关的开源数据集&#xff0c;内附下载链接。 UAV Delievery 无人机轨迹数据集 下载链接&#xff…...

React和Vue区别,以及注意事项

目录 一、语法和框架特性的差异 二、开发习惯和注意事项 三、特别注意事项 一、语法和框架特性的差异 模板语法&#xff1a; Vue使用了类似于传统HTML的模板语法&#xff0c;通过双大括号{{ }}进行插值&#xff0c;而React则使用了JSX语法。在Vue中&#xff0c;你可以直接在…...

光伏项目难管理的问题如何解决?

1.数字化管理平台的应用 数字化是当前解决光伏项目管理难题的关键手段之一。通过建立统一的数字化管理平台&#xff0c;可以实现对光伏电站的远程监控、数据分析、故障预警及运维调度等功能。这类平台通常集成有智能算法&#xff0c;能够实时分析电站运行数据&#xff0c;及时…...

图片美化SDK解决方案,赋能H5与小程序极致体验

无论是社交媒体分享、电商产品展示&#xff0c;还是个人日常生活的记录&#xff0c;一张经过精心美化的图片总能瞬间吸引眼球&#xff0c;传递出更加丰富和动人的信息。如何在不增加应用体积、不牺牲用户体验的前提下&#xff0c;为H5页面和小程序提供媲美原生APP的图片美化功能…...

Kron Reduction消去法如何操作,矩阵推导过程

三阶矩阵消去单节点 在电力系统中,母线上的电流注入始终为0,这样的节点可以通过一定的方法消除。以三节点为例,假设注入节点3的电流为0,则: [ I 1 I 2 I 3 ] = [ I 1 I 2 0 ] = [ Y 11 Y 12 Y 13 Y 21 Y 22 Y 23 Y 31 Y 32 Y 33 ] [ V 1 V 2 V 3 ] \left[\begin{array}{…...

实时开放词汇目标检测(论文复现)

实时开放词汇目标检测&#xff08;论文复现&#xff09; 本文所涉及所有资源均在传知代码平台可获取 文章目录 实时开放词汇目标检测&#xff08;论文复现&#xff09;概述模型框架使用方式配置环境训练和评估训练评估 演示效果Gradio Demo 概述 YOLO-World是由腾讯人工智能实验…...

陪诊小程序搭建:打造便利的陪诊环境

陪诊行业作为一个新兴行业&#xff0c;随着老龄化的严重&#xff0c;在近几年中需求量日益旺盛。陪诊师为大众的就医提供了极大的便利性&#xff0c;在看病难、医疗资源紧张方面发挥了积极作用。 在陪诊行业的快速发展下&#xff0c;陪诊小程序为行业带来了便捷的模式&#xf…...

Qt5.15.2静态编译 MinGW with static OpenSSL

如果想用VS2017编译,可参考:Qt5.15.2静态编译 VS2017 with static OpenSSL 一.环境 系统:Windows 10 专业版 64位 编译器:MinGW 8.1.0 第三方工具:perl,ruby和python PS:经验证,用MinGW 12.1.0来编译Qt5.15.2会报错 我用Phthon 2.7.18虽然可以编过,但是强烈建议Pyth…...

Linux Ubuntu dbus CAPI ---- #include<dbus.h>出现“无法打开源文件dbus/xxx.h“的问题

一、确保已安装dbus库和CAPI sudo apt-get install libdbus-1-dev 二、在c_cpp_properties.json的includePath中是否配置了dbus库依赖文件所在的路径 三、编译一个简单的dbus代码&#xff0c;在编译过程中只要出现.h文件找不到的情况&#xff0c;就使用下列命令找到.h文件路径…...

React01 开发环境搭建

React 开发环境搭建 一、创建 React 项目二、项目精简 一、创建 React 项目 执行下述命令创建 react 项目 blu-react-basis npx create-react-app blu-react-basis项目目录结构如下&#xff1a; 执行下述命令启动项目 npm run start启动效果如下&#xff1a; 二、项目精简 …...

数据结构之旅(顺序表)

前言: Hello,各位小伙伴们我们在过去的60天里学完了C语言基本语法,由于小编在准备数学竞赛,最近没有给大家更新,并且没有及时回复大家的私信,小编在这里和大家说一声对不起!,小编这几天会及时给大家更新初阶数据结构的内容,然后我们来学习今天的内容吧! 一. 顺序表的概念和结…...

掌握 C# 内存管理与垃圾回收机制

内存管理是每个开发者需要了解的关键部分&#xff0c;特别是在构建高性能应用时。在 C# 中&#xff0c;垃圾回收&#xff08;Garbage Collection, GC&#xff09; 机制自动管理内存分配和释放&#xff0c;大大简化了内存管理的复杂性。然而&#xff0c;理解值类型与引用类型的区…...

【JavaEE】——初始网络原理

阿华代码&#xff0c;不是逆风&#xff0c;就是我疯 你们的点赞收藏是我前进最大的动力&#xff01;&#xff01; 希望本文内容能够帮助到你&#xff01;&#xff01; 目录 一&#xff1a;局域网 1&#xff1a;概念 二&#xff1a;局域网的连接方式 1&#xff1a;网线直连 …...

Nginx和Lua配合使用

在NGINX中使用Lua进行开发时&#xff0c;可以通过不同的配置块来指定Lua脚本的执行位置。这些配置块被称为“phase hooks”&#xff0c;即阶段挂钩。每个阶段挂钩都有其特定的作用时间和目的。以下是NGINX Lua模块中常见的配置指令及其用途&#xff1a; 常见的Phase Hooks 1.a…...

程序化交易是什么,它有哪些优势,需要注意什么?

炒股自动化&#xff1a;申请官方API接口&#xff0c;散户也可以 python炒股自动化&#xff08;0&#xff09;&#xff0c;申请券商API接口 python炒股自动化&#xff08;1&#xff09;&#xff0c;量化交易接口区别 Python炒股自动化&#xff08;2&#xff09;&#xff1a;获取…...

水库抽样算法(大数据算法作业)

时隔一个多月&#xff0c;终于想起来写大数据算法基础的实验报告&#xff0c;主要是快截止了&#xff0c;hh 这两天加急把这个报告写完了~ 接下来&#xff0c;写一写证明过程&#xff08;参考书籍&#xff1a;高等教育出版社《数据科学与工程算法基础》&#xff09;主要代码以…...

SHCTF-2024-week1-wp

文章目录 SHCTF 2024 week1 wpMisc[Week1]真真假假?遮遮掩掩![Week1]拜师之旅①[Week1]Rasterizing Traffic[Week1]有WiFi干嘛不用呢&#xff1f; web[Week1] 单身十八年的手速[Week1] MD5 Master[Week1] ez_gittt[Week1] jvav[Week1] poppopop[Week1] 蛐蛐?蛐蛐! SHCTF 2024…...

docker-comapose安装部署mysql

docker-comapose安装部署mysql version: "3.4" services:mysql:image: docker.das-security.cn/middleware/mysql:8.4.1container_name: mysqlenvironment:- MYSQL_ROOT_PASSWORD密码volumes:- /etc/localtime:/etc/localtime- ./configs/mysql/initdb:/docker-entr…...

C语言初阶-数据类型和变量【下】

紧接上期------------------------->>>C语言初阶-数据类型和变量【上】 全局变量和局部变量在内存中存储在哪⾥呢&#xff1f; ⼀般我们在学习C/C语⾔的时候&#xff0c;我们会关注内存中的三个区域&#xff1a; 栈区 、 堆区 、 静态区 。 内存的分配情况 局部变量是…...

C++:命名空间(namespace)详细介绍与案例

命名空间&#xff08;namespace&#xff09;是C中的一个重要概念&#xff0c;用于组织代码和避免名称冲突。它们允许程序员将标识符&#xff08;如变量、函数、类等&#xff09;组织在一起&#xff0c;以便在较大的程序中防止命名冲突。 1. 基本概念 命名空间的基本定义方式如…...

专题十一_递归_回溯_剪枝_综合练习_算法专题详细总结

目录 1. 找出所有⼦集的异或总和再求和&#xff08;easy&#xff09; 解析&#xff1a; 方法一&#xff1a; 解法二&#xff1a; 总结&#xff1a; 2. 全排列 Ⅱ&#xff08;medium&#xff09; 解析&#xff1a; 解法一&#xff1a;只关心“不合法”的分支 解法二&…...

java中Runnable接口是什么?基本概念、工作原理、优点、`Runnable`与`Thread`的对比、与`Callable`接口的对比、实际场景

Runnable接口是Java提供的一种用于实现多线程的接口&#xff0c;通常用来定义任务的具体逻辑。与Thread类不同&#xff0c;Runnable接口只提供一种抽象方法run()&#xff0c;没有任何与线程的生命周期、管理相关的功能。它的主要作用是与Thread类或线程池&#xff08;如Executo…...

Mybatis Plus连接使用ClickHouse也如此简单

通过阅读列式数据库ClickHouse官网&#xff0c;不难看出它有支持JDBC规范的驱动jar包&#xff0c;可以直接集成到Object Relational Mapping框架等&#xff0c;下面我用SpringBootMybatisPlus环境连接ClickHouse来演示一下 集成步骤 1.Maven引入ClickHouse提供的JDBC依赖 <…...

什么社交平台可以找到搭子?分享多款找搭子必备的人气软件

在这个丰富多彩的世界里&#xff0c;我们常常渴望有一个志同道合的搭子&#xff0c;一起分享生活的点滴&#xff0c;共同探索未知的领域。无论是追寻美食的舌尖之旅&#xff0c;还是踏上充满惊喜的旅途&#xff1b;无论是在健身房挥洒汗水…… 找到一个合适的搭子&#xff0c;都…...

STM32 RTC实时时钟 F407 寄存器

RTC介绍 STM32F1: RTC模块拥有一组连续计数的计数器&#xff0c;在相应软件配置下&#xff0c;可提供时钟日历的功能。 即在F1系列&#xff0c;RTC的日历部分只有一个32位的寄存器 该寄存器直接存放 时间戳 的值&#xff0c;即&#xff1…...

矩阵等价、向量组等价、线性方程组同解与公共解的关系

矩阵等价 矩阵 A 、 B 等价 ⇔ 两矩阵秩相等 R ( A ) R ( B ) ⇔ 每个矩阵的行秩等于列秩&#xff0c;两个矩阵的行秩与列秩分别相等 ⇔ 若行满秩则列向量组等价 ⇔ 若列满秩则行向量组等价 \begin{align} 矩阵A、B等价\\ &\Leftrightarrow 两矩阵秩相等R(A)R(B)\\ &\…...

[Linux] Linux 进程程序替换

标题&#xff1a;[Linux] Linux 进程程序替换 个人主页水墨不写bug &#xff08;图片来源于网络&#xff09; 目录 O、前言 一、进程程序替换的直观现象&#xff08;什么是进程程序替换&#xff1f;&#xff09; 二、进程程序替换的原理 三、进程程序替换的函数&#xff08…...

【Linux系统编程】第三十一弹---深入理解静态库:从零开始制作与高效使用的完全指南

✨个人主页&#xff1a; 熬夜学编程的小林 &#x1f497;系列专栏&#xff1a; 【C语言详解】 【数据结构详解】【C详解】【Linux系统编程】 目录 1、静态库 1.1、怎么做静态库 1.2、怎么使用静态库 1、静态库 1.1、怎么做静态库 在Linux环境下&#xff0c;通常使用GCC&am…...

FFmpeg 简介及其下载安装步骤

目录 一、FFmpeg 简介 二、FFmpeg 安装步骤 2.1 打开官网 2.2 选择FFmpeg系统版本 2.3 下载FFmpeg压缩包 2.4 将下载好的压缩包进行解压 2.5 设置环境变量 2.5.1 在搜索栏中搜索【环境变量】&#xff0c;然后单击将其打开 2.5.2 找到系统变量中的【Path】&#xff0c;点…...