当前位置: 首页 > news >正文

【详细教程】如何使用YOLOv11进行图像与视频的目标检测

《博主简介》

小伙伴们好,我是阿旭。专注于人工智能、AIGC、python、计算机视觉相关分享研究。
更多学习资源,可关注公-仲-hao:【阿旭算法与机器学习】,共同学习交流~
👍感谢小伙伴们点赞、关注!

《------往期经典推荐------》

一、AI应用软件开发实战专栏【链接】

项目名称项目名称
1.【人脸识别与管理系统开发】2.【车牌识别与自动收费管理系统开发】
3.【手势识别系统开发】4.【人脸面部活体检测系统开发】
5.【图片风格快速迁移软件开发】6.【人脸表表情识别系统】
7.【YOLOv8多目标识别与自动标注软件开发】8.【基于YOLOv8深度学习的行人跌倒检测系统】
9.【基于YOLOv8深度学习的PCB板缺陷检测系统】10.【基于YOLOv8深度学习的生活垃圾分类目标检测系统】
11.【基于YOLOv8深度学习的安全帽目标检测系统】12.【基于YOLOv8深度学习的120种犬类检测与识别系统】
13.【基于YOLOv8深度学习的路面坑洞检测系统】14.【基于YOLOv8深度学习的火焰烟雾检测系统】
15.【基于YOLOv8深度学习的钢材表面缺陷检测系统】16.【基于YOLOv8深度学习的舰船目标分类检测系统】
17.【基于YOLOv8深度学习的西红柿成熟度检测系统】18.【基于YOLOv8深度学习的血细胞检测与计数系统】
19.【基于YOLOv8深度学习的吸烟/抽烟行为检测系统】20.【基于YOLOv8深度学习的水稻害虫检测与识别系统】
21.【基于YOLOv8深度学习的高精度车辆行人检测与计数系统】22.【基于YOLOv8深度学习的路面标志线检测与识别系统】
23.【基于YOLOv8深度学习的智能小麦害虫检测识别系统】24.【基于YOLOv8深度学习的智能玉米害虫检测识别系统】
25.【基于YOLOv8深度学习的200种鸟类智能检测与识别系统】26.【基于YOLOv8深度学习的45种交通标志智能检测与识别系统】
27.【基于YOLOv8深度学习的人脸面部表情识别系统】28.【基于YOLOv8深度学习的苹果叶片病害智能诊断系统】
29.【基于YOLOv8深度学习的智能肺炎诊断系统】30.【基于YOLOv8深度学习的葡萄簇目标检测系统】
31.【基于YOLOv8深度学习的100种中草药智能识别系统】32.【基于YOLOv8深度学习的102种花卉智能识别系统】
33.【基于YOLOv8深度学习的100种蝴蝶智能识别系统】34.【基于YOLOv8深度学习的水稻叶片病害智能诊断系统】
35.【基于YOLOv8与ByteTrack的车辆行人多目标检测与追踪系统】36.【基于YOLOv8深度学习的智能草莓病害检测与分割系统】
37.【基于YOLOv8深度学习的复杂场景下船舶目标检测系统】38.【基于YOLOv8深度学习的农作物幼苗与杂草检测系统】
39.【基于YOLOv8深度学习的智能道路裂缝检测与分析系统】40.【基于YOLOv8深度学习的葡萄病害智能诊断与防治系统】
41.【基于YOLOv8深度学习的遥感地理空间物体检测系统】42.【基于YOLOv8深度学习的无人机视角地面物体检测系统】
43.【基于YOLOv8深度学习的木薯病害智能诊断与防治系统】44.【基于YOLOv8深度学习的野外火焰烟雾检测系统】
45.【基于YOLOv8深度学习的脑肿瘤智能检测系统】46.【基于YOLOv8深度学习的玉米叶片病害智能诊断与防治系统】
47.【基于YOLOv8深度学习的橙子病害智能诊断与防治系统】48.【基于深度学习的车辆检测追踪与流量计数系统】
49.【基于深度学习的行人检测追踪与双向流量计数系统】50.【基于深度学习的反光衣检测与预警系统】
51.【基于深度学习的危险区域人员闯入检测与报警系统】52.【基于深度学习的高密度人脸智能检测与统计系统】
53.【基于深度学习的CT扫描图像肾结石智能检测系统】54.【基于深度学习的水果智能检测系统】
55.【基于深度学习的水果质量好坏智能检测系统】56.【基于深度学习的蔬菜目标检测与识别系统】
57.【基于深度学习的非机动车驾驶员头盔检测系统】58.【基于深度学习的太阳能电池板检测与分析系统】
59.【基于深度学习的工业螺栓螺母检测】60.【基于深度学习的金属焊缝缺陷检测系统】
61.【基于深度学习的链条缺陷检测与识别系统】62.【基于深度学习的交通信号灯检测识别】
63.【基于深度学习的草莓成熟度检测与识别系统】64.【基于深度学习的水下海生物检测识别系统】
65.【基于深度学习的道路交通事故检测识别系统】

二、机器学习实战专栏【链接】,已更新31期,欢迎关注,持续更新中~~
三、深度学习【Pytorch】专栏【链接】
四、【Stable Diffusion绘画系列】专栏【链接】
五、YOLOv8改进专栏【链接】持续更新中~~
六、YOLO性能对比专栏【链接】,持续更新中~

《------正文------》

目录

  • 如何使用YOLOv11进行目标检测
  • 介绍
  • YOLOv11关键创新
  • 如何将YOLOv 11用于图像检测
    • 步骤1:安装必要的库
    • 步骤2:导入库
    • 步骤3:选择模型型号
    • 步骤4:编写一个函数来预测和检测图像中的对象
    • 步骤5:使用YOLOv11检测图像中的对象
    • 步骤6:保存并绘制结果图像
    • 完整代码:
  • 如何将YOLOv11用于视频检测
    • 步骤1:安装必要的库
    • 步骤2和3:导入库与模型
    • 步骤4:创建Videowriter以保存视频的结果
    • 步骤5:使用YOLOv 11检测视频中的对象
    • 完整代码
  • 结论

如何使用YOLOv11进行目标检测

img

介绍

继YOLOv 8、YOLOv 9和YOLOv10之后,最近刚发布了最新的YOLOv11!这一新的迭代不仅建立在其版本的优势之上,而且还引入了几个突破性的增强功能,为目标检测和计算机视觉设定了新的基准。

与以前的版本一样,YOLOv 11擅长检测、分类和定位图像和视频中的对象。然而,它更进一步,通过整合显著的增强功能,提高了跨多个用例的性能和适应性。让我们来看看使YOLOv 11在该系列中脱颖而出的关键增强功能。

YOLOv11关键创新

  1. 增强的特征提取
    YOLOv11使用改进的主干和颈部架构,显著提高了特征提取能力。这导致更准确的物体检测和更轻松地处理复杂视觉任务的能力。
  2. 针对效率和速度进行了优化
    凭借精致的架构设计和优化的训练管道,YOLOv11在保持高精度的同时提供更快的处理速度。这种平衡确保了YOLOv11是实时和大规模应用的理想选择。
  3. 更高的精度,更少的参数
    YOLOv11m是YOLOv11的一个中等大小的变体,在COCO数据集上实现了更高的平均精度(mAP),同时使用的参数比YOLOv8m少22%。这种改进使其在不影响性能的情况下提高了计算效率。
  4. 跨环境的适应性
    无论是部署在边缘设备、云平台还是由NVIDIA GPU驱动的系统上,YOLOv11都能为各种部署场景提供最大的灵活性。
  5. 广泛的支持任务
    YOLOv 11将其功能扩展到传统的对象检测之外,以支持实例分割,图像分类,姿态估计和面向对象检测(OBB)。这种多功能性使其成为应对各种计算机视觉挑战的强大工具。

这些增强功能的集成使YOLOv 11成为尖端计算机视觉应用的强大引擎。请继续关注,我们将探索YOLOv 11如何突破这个动态领域的可能界限!

如何将YOLOv 11用于图像检测

步骤1:安装必要的库

pip install opencv-python ultralytics

步骤2:导入库

import cv2
from ultralytics import YOLO

步骤3:选择模型型号

model = YOLO("yolo11x.pt")

在这个网站上,您可以比较不同的模型,并权衡各自的优点和缺点。在这种情况下,我们选择yolov11x.pt。

步骤4:编写一个函数来预测和检测图像中的对象

def predict(chosen_model, img, classes=[], conf=0.5):if classes:results = chosen_model.predict(img, classes=classes, conf=conf)else:results = chosen_model.predict(img, conf=conf)return resultsdef predict_and_detect(chosen_model, img, classes=[], conf=0.5, rectangle_thickness=2, text_thickness=1):results = predict(chosen_model, img, classes, conf=conf)for result in results:for box in result.boxes:cv2.rectangle(img, (int(box.xyxy[0][0]), int(box.xyxy[0][1])),(int(box.xyxy[0][2]), int(box.xyxy[0][3])), (255, 0, 0), rectangle_thickness)cv2.putText(img, f"{result.names[int(box.cls[0])]}",(int(box.xyxy[0][0]), int(box.xyxy[0][1]) - 10),cv2.FONT_HERSHEY_PLAIN, 1, (255, 0, 0), text_thickness)return img, results

步骤5:使用YOLOv11检测图像中的对象

# read the image
image = cv2.imread("YourImagePath")
result_img, _ = predict_and_detect(model, image, conf=0.5)

步骤6:保存并绘制结果图像

cv2.imshow("Image", result_img)
cv2.imwrite("YourSavePath", result_img)
cv2.waitKey(0)

完整代码:

from ultralytics import YOLO
import cv2def predict(chosen_model, img, classes=[], conf=0.5):if classes:results = chosen_model.predict(img, classes=classes, conf=conf)else:results = chosen_model.predict(img, conf=conf)return resultsdef predict_and_detect(chosen_model, img, classes=[], conf=0.5, rectangle_thickness=2, text_thickness=1):results = predict(chosen_model, img, classes, conf=conf)for result in results:for box in result.boxes:cv2.rectangle(img, (int(box.xyxy[0][0]), int(box.xyxy[0][1])),(int(box.xyxy[0][2]), int(box.xyxy[0][3])), (255, 0, 0), rectangle_thickness)cv2.putText(img, f"{result.names[int(box.cls[0])]}",(int(box.xyxy[0][0]), int(box.xyxy[0][1]) - 10),cv2.FONT_HERSHEY_PLAIN, 1, (255, 0, 0), text_thickness)return img, resultsmodel = YOLO("yolo11x.pt")# read the image
image = cv2.imread("YourImagePath.png")
result_img, _ = predict_and_detect(model, image, classes=[], conf=0.5)cv2.imshow("Image", result_img)
cv2.imwrite("YourSavePath.png", result_img)
cv2.waitKey(0)

如何将YOLOv11用于视频检测

步骤1:安装必要的库

pip install opencv-python ultralytics

步骤2和3:导入库与模型

import cv2
from ultralytics import YOLOmodel = YOLO("yolo11x.pt")

步骤4:创建Videowriter以保存视频的结果

# defining function for creating a writer (for mp4 videos)
def create_video_writer(video_cap, output_filename):# grab the width, height, and fps of the frames in the video stream.frame_width = int(video_cap.get(cv2.CAP_PROP_FRAME_WIDTH))frame_height = int(video_cap.get(cv2.CAP_PROP_FRAME_HEIGHT))fps = int(video_cap.get(cv2.CAP_PROP_FPS))# initialize the FourCC and a video writer objectfourcc = cv2.VideoWriter_fourcc(*'MP4V')writer = cv2.VideoWriter(output_filename, fourcc, fps,(frame_width, frame_height))return writer

步骤5:使用YOLOv 11检测视频中的对象

output_filename = "YourFilename.mp4"video_path = r"YourVideoPath.mp4"
cap = cv2.VideoCapture(video_path)
writer = create_video_writer(cap, output_filename)
while True:success, img = cap.read()if not success:breakresult_img, _ = predict_and_detect(model, img, classes=[], conf=0.5)writer.write(result_img)cv2.imshow("Image", result_img)cv2.waitKey(1)
writer.release()

完整代码

import cv2
from ultralytics import YOLOdef predict(chosen_model, img, classes=[], conf=0.5):if classes:results = chosen_model.predict(img, classes=classes, conf=conf)else:results = chosen_model.predict(img, conf=conf)return resultsdef predict_and_detect(chosen_model, img, classes=[], conf=0.5, rectangle_thickness=2, text_thickness=1):results = predict(chosen_model, img, classes, conf=conf)for result in results:for box in result.boxes:cv2.rectangle(img, (int(box.xyxy[0][0]), int(box.xyxy[0][1])),(int(box.xyxy[0][2]), int(box.xyxy[0][3])), (255, 0, 0), rectangle_thickness)cv2.putText(img, f"{result.names[int(box.cls[0])]}",(int(box.xyxy[0][0]), int(box.xyxy[0][1]) - 10),cv2.FONT_HERSHEY_PLAIN, 1, (255, 0, 0), text_thickness)return img, results# defining function for creating a writer (for mp4 videos)
def create_video_writer(video_cap, output_filename):# grab the width, height, and fps of the frames in the video stream.frame_width = int(video_cap.get(cv2.CAP_PROP_FRAME_WIDTH))frame_height = int(video_cap.get(cv2.CAP_PROP_FRAME_HEIGHT))fps = int(video_cap.get(cv2.CAP_PROP_FPS))# initialize the FourCC and a video writer objectfourcc = cv2.VideoWriter_fourcc(*'MP4V')writer = cv2.VideoWriter(output_filename, fourcc, fps,(frame_width, frame_height))return writermodel = YOLO("yolo11x.pt")output_filename = "YourFilename.mp4"video_path = r"YourVideoPath.mp4"
cap = cv2.VideoCapture(video_path)
writer = create_video_writer(cap, output_filename)
while True:success, img = cap.read()if not success:breakresult_img, _ = predict_and_detect(model, img, classes=[], conf=0.5)writer.write(result_img)cv2.imshow("Image", result_img)cv2.waitKey(1)
writer.release()

结论

在本教程中,我们学习了如何使用YOLOv 11检测图像和视频中的对象。如果你觉得这段代码很有帮助,感谢点赞关注!


关注文末名片G-Z-H:【阿旭算法与机器学习】,发送【开源】可获取更多学习资源

在这里插入图片描述

好了,这篇文章就介绍到这里,喜欢的小伙伴感谢给点个赞和关注,更多精彩内容持续更新~~
关于本篇文章大家有任何建议或意见,欢迎在评论区留言交流!

相关文章:

【详细教程】如何使用YOLOv11进行图像与视频的目标检测

《博主简介》 小伙伴们好,我是阿旭。专注于人工智能、AIGC、python、计算机视觉相关分享研究。 ✌更多学习资源,可关注公-仲-hao:【阿旭算法与机器学习】,共同学习交流~ 👍感谢小伙伴们点赞、关注! 《------往期经典推…...

H7-TOOL的LUA小程序教程第14期:任意波形信号发生器,0-20mA输出和微型数控电源(2024-10-11,已更新)

LUA脚本的好处是用户可以根据自己注册的一批API(当前TOOL已经提供了几百个函数供大家使用),实现各种小程序,不再限制Flash里面已经下载的程序,就跟手机安装APP差不多,所以在H7-TOOL里面被广泛使用&#xff…...

Redis面试篇3

1、Redis的数据类型,以及每种数据类型的使用场景? 常见的几种数据类型和使用场景如下: 字符串(String):字符串类型是Redis最基本的数据结构,一个键最大能存储512MB。 使用场景:适用于计数器、分布式锁、缓…...

集成方案 | 借助 Microsoft Copilot for Sales 与 Docusign,加速销售流程!

加速协议信息提取,随时优化邮件内容~ 在当今信息爆炸的时代,销售人员掌握着丰富的数据资源。他们能够通过 CRM 平台、电子邮件、合同库以及其他多种记录系统,随时检索特定个人或组织的关键信息。这些数据对于销售沟通至关重要。然而&#x…...

k8s 1.28.2 集群部署 MinIO 分布式集群

文章目录 [toc]MinIO 介绍MinIO 生产硬件要求MinIO 存储要求MinIO 内存要求MinIO 网络要求MinIO 部署架构分布式 MinIO复制的 MinIO 部署 MinIO创建目录节点打标签创建 namespace创建 pv创建 MinIO配置 ingress问题记录通过代理服务器访问 MinIO 的 Object Browser 界面一直显示…...

HAL库常用的函数:

目录 HAL库: 1.GPIO常用函数: 1.HAL_GPIO_ReadPin( ) 2.HAL_GPIO_WritePin( ) 3.HAL_GPIO_TogglePin( ) 4.HAL_GPIO_EXTI_IRQHandler( ) 5.HAL_GPIO_EXTI_Callback( ) 2.UART常用函数: 1.HAL_U…...

如何捕捉行情爆发的前兆

在金融市场的激烈角逐中,每一次行情的爆发都是投资者获取丰厚回报的关键时刻。然而,如何识别并把握这些时刻,却是一门需要深厚金融专业知识和敏锐洞察力的艺术。今天,我们就来深入探讨行情爆发的初期信号,揭示那些能够…...

【万字长文】Word2Vec计算详解(一)CBOW模型

【万字长文】Word2Vec计算详解(一)CBOW模型 写在前面 本文用于记录本人学习NLP过程中,学习Word2Vec部分时的详细过程,本文与本人写的其他文章一样,旨在给出Word2Vec模型中的详细计算过程,包括每个模块的计…...

React Native源码学习

核心组件 基础组件:View、Text、Image、TextInput、ScrollView(性能没有FlatList好,因为它会一次性把子元素渲染出来)、StyleSheet交互组件:button列表视图:FlatList(优先渲染屏幕上可见的元素&…...

【计网】从零开始认识https协议 --- 保证安全的网络通信

在每个死胡同的尽头, 都有另一个维度的天空, 在无路可走时迫使你腾空而起, 那就是奇迹。 --- 廖一梅 --- 从零开始认识https协议 1 什么是https协议2 https通信方案2.1 只使用对称加密2.2 只使用非对称加密2.3 双方都使用非对称加密2.4 …...

Ubuntu安装 MySQL【亲测有效】

在Ubuntu上安装MySQL数据库的步骤通常包括更新软件包列表、安装MySQL服务器、启动并配置MySQL服务等。以下是一个详细的安装指南: 一、更新软件包列表 首先,打开终端并输入以下命令来更新Ubuntu的软件包列表: sudo apt update二、安装MySQ…...

Unity 从零开始搭建一套简单易用的UGUI小框架 扩展与优化篇(完结)

一个通用的UGUI小框架就算是写完了,下面是一步步的思考与优化过程 Unity 从零开始搭建一套简单易用的UGUI小框架 基础分析篇-CSDN博客 Unity 从零开始搭建一套简单易用的UGUI小框架 功能撰写与优化篇-CSDN博客 从使用者的角度来整理一下可能会发出的疑问 0. Panel…...

MySQL多表操作--外键约束多表关系

外键约束介绍 Mysql外键约束(foreign key)是表的一个特殊字段,常与主键约束一起使用。外键约束是一种用于维护两个表之间数据一致性的方法。它确保引用表中的每个值都存在于主表中的某个列中。外键约束通常用于实现数据库的参照完整性。对于两…...

【python入门到精通专题】8.装饰器

装饰器是python语言中的语法糖,可以通过装饰器对函数的功能进行拓展。 为什么需要装饰器 我们假设你的程序实现了say_hello()和say_goodbye()两个函数。 def say_hello():print("hello!")def say_goodbye():print("hello!") # 此处应打印go…...

Halcon Blob分析提取小光斑

文章目录 算子complement 返回一个区域的补集select_region_point 选择包含指定像素的所有区域intensity 计算灰度值的均值和偏差 案例 算子 complement 返回一个区域的补集 complement(Region : RegionComplement : : )Region (输入对象):这指的是输入的一个或多…...

Lua

1.声明一个变量 只要赋值一个变量,就相当于新建了一个变量,默认全局变量,加一个local前缀之后,这个变量就变成了局部变量 a1//全局变量 local b2//局部变量2.nil类型 在Lua里没有被声明过的变量都是nil,nil是一种类…...

模型 总观效应

系列文章 分享 模型,了解更多👉 模型_思维模型目录。超越自我,洞见生命之渺小。 1 总观效应的呈现和应用 1.1 回首创业路,星辰大海的启示 陈浩是一名连续创业者,他的创业历程充满了起伏和挑战。在经历了几次失败后&a…...

【HarmonyOS NEXT】实现页面水印功能

关键词:鸿蒙、水印、Watermark、页面、触摸问题 注:本期文章同样适用 OpenHarmony 的开发 在app开发过程中时常会出现敏感信息页面,为保护信息安全和及时的数据追踪,通常会采用给页面加水印的形式,那么本期文章会介绍…...

selenium自动化测试之Junit

1. 常用的注解 将junit的索引添加到pom文件&#xff1a; <!-- https://mvnrepository.com/artifact/org.junit.jupiter/junit-jupiter-api --><dependency><groupId>org.junit.jupiter</groupId><artifactId>junit-jupiter-api</artifactId&…...

【氮化镓】基于氮化镓的互补逻辑集成电路[Nature Electronics]

【摘要】本文介绍了一种基于氮化镓(GaN)的互补金属氧化物半导体(CMOS)逻辑集成电路,该电路利用氧等离子体处理技术实现了增强型n沟道和p沟道GaN场效应晶体管的单片集成。研究者们展示了包括反相器、与非门、或非门和传输门在内的基本逻辑门,以及多级逻辑电路,如锁存器和…...

模型参数、模型存储精度、参数与显存

模型参数量衡量单位 M&#xff1a;百万&#xff08;Million&#xff09; B&#xff1a;十亿&#xff08;Billion&#xff09; 1 B 1000 M 1B 1000M 1B1000M 参数存储精度 模型参数是固定的&#xff0c;但是一个参数所表示多少字节不一定&#xff0c;需要看这个参数以什么…...

Leetcode 3577. Count the Number of Computer Unlocking Permutations

Leetcode 3577. Count the Number of Computer Unlocking Permutations 1. 解题思路2. 代码实现 题目链接&#xff1a;3577. Count the Number of Computer Unlocking Permutations 1. 解题思路 这一题其实就是一个脑筋急转弯&#xff0c;要想要能够将所有的电脑解锁&#x…...

el-switch文字内置

el-switch文字内置 效果 vue <div style"color:#ffffff;font-size:14px;float:left;margin-bottom:5px;margin-right:5px;">自动加载</div> <el-switch v-model"value" active-color"#3E99FB" inactive-color"#DCDFE6"…...

《通信之道——从微积分到 5G》读书总结

第1章 绪 论 1.1 这是一本什么样的书 通信技术&#xff0c;说到底就是数学。 那些最基础、最本质的部分。 1.2 什么是通信 通信 发送方 接收方 承载信息的信号 解调出其中承载的信息 信息在发送方那里被加工成信号&#xff08;调制&#xff09; 把信息从信号中抽取出来&am…...

【决胜公务员考试】求职OMG——见面课测验1

2025最新版&#xff01;&#xff01;&#xff01;6.8截至答题&#xff0c;大家注意呀&#xff01; 博主码字不易点个关注吧,祝期末顺利~~ 1.单选题(2分) 下列说法错误的是:&#xff08; B &#xff09; A.选调生属于公务员系统 B.公务员属于事业编 C.选调生有基层锻炼的要求 D…...

NLP学习路线图(二十三):长短期记忆网络(LSTM)

在自然语言处理(NLP)领域,我们时刻面临着处理序列数据的核心挑战。无论是理解句子的结构、分析文本的情感,还是实现语言的翻译,都需要模型能够捕捉词语之间依时序产生的复杂依赖关系。传统的神经网络结构在处理这种序列依赖时显得力不从心,而循环神经网络(RNN) 曾被视为…...

今日科技热点速览

&#x1f525; 今日科技热点速览 &#x1f3ae; 任天堂Switch 2 正式发售 任天堂新一代游戏主机 Switch 2 今日正式上线发售&#xff0c;主打更强图形性能与沉浸式体验&#xff0c;支持多模态交互&#xff0c;受到全球玩家热捧 。 &#x1f916; 人工智能持续突破 DeepSeek-R1&…...

Unsafe Fileupload篇补充-木马的详细教程与木马分享(中国蚁剑方式)

在之前的皮卡丘靶场第九期Unsafe Fileupload篇中我们学习了木马的原理并且学了一个简单的木马文件 本期内容是为了更好的为大家解释木马&#xff08;服务器方面的&#xff09;的原理&#xff0c;连接&#xff0c;以及各种木马及连接工具的分享 文件木马&#xff1a;https://w…...

在Ubuntu24上采用Wine打开SourceInsight

1. 安装wine sudo apt install wine 2. 安装32位库支持,SourceInsight是32位程序 sudo dpkg --add-architecture i386 sudo apt update sudo apt install wine32:i386 3. 验证安装 wine --version 4. 安装必要的字体和库(解决显示问题) sudo apt install fonts-wqy…...

【分享】推荐一些办公小工具

1、PDF 在线转换 https://smallpdf.com/cn/pdf-tools 推荐理由&#xff1a;大部分的转换软件需要收费&#xff0c;要么功能不齐全&#xff0c;而开会员又用不了几次浪费钱&#xff0c;借用别人的又不安全。 这个网站它不需要登录或下载安装。而且提供的免费功能就能满足日常…...