动手学深度学习60 机器翻译与数据集
1. 机器翻译与数据集
import os
import torch
from d2l import torch as d2l#@save
d2l.DATA_HUB['fra-eng'] = (d2l.DATA_URL + 'fra-eng.zip','94646ad1522d915e7b0f9296181140edcf86a4f5')#@save
def read_data_nmt():"""载入“英语-法语”数据集"""data_dir = d2l.download_extract('fra-eng')with open(os.path.join(data_dir, 'fra.txt'), 'r',encoding='utf-8') as f:return f.read()raw_text = read_data_nmt()
print(raw_text[:75])#@save
# 标点符号也要翻译
def preprocess_nmt(text):"""预处理“英语-法语”数据集"""def no_space(char, prev_char):return char in set(',.!?') and prev_char != ' '# 使用空格替换不间断空格# 使用小写字母替换大写字母text = text.replace('\u202f', ' ').replace('\xa0', ' ').lower()# 在单词和标点符号之间插入空格out = [' ' + char if i > 0 and no_space(char, text[i - 1]) else charfor i, char in enumerate(text)]return ''.join(out)text = preprocess_nmt(raw_text)
print(text[:80])#@save
def tokenize_nmt(text, num_examples=None):"""词元化“英语-法语”数据数据集"""source, target = [], []for i, line in enumerate(text.split('\n')):if num_examples and i > num_examples:breakparts = line.split('\t')if len(parts) == 2:source.append(parts[0].split(' '))target.append(parts[1].split(' '))return source, target
# 英语 法语
source, target = tokenize_nmt(text)
source[:6], target[:6]#@save
def show_list_len_pair_hist(legend, xlabel, ylabel, xlist, ylist):"""绘制列表长度对的直方图"""d2l.set_figsize()_, _, patches = d2l.plt.hist([[len(l) for l in xlist], [len(l) for l in ylist]])d2l.plt.xlabel(xlabel)d2l.plt.ylabel(ylabel)for patch in patches[1].patches:patch.set_hatch('/')d2l.plt.legend(legend)show_list_len_pair_hist(['source', 'target'], '# tokens per sequence','count', source, target);# <pad> 填充 <bos> 句子开始 <eos> 句子结束
# 词小于等于2 就不要了。
src_vocab = d2l.Vocab(source, min_freq=2,reserved_tokens=['<pad>', '<bos>', '<eos>'])
len(src_vocab)# 怎么让句子变成一样的长度 填充或者删除。
#@save
def truncate_pad(line, num_steps, padding_token):"""截断或填充文本序列"""if len(line) > num_steps:return line[:num_steps] # 截断return line + [padding_token] * (num_steps - len(line)) # 填充truncate_pad(src_vocab[source[0]], 10, src_vocab['<pad>'])#@save
# valid_len 告诉句子实际长度是多少【记录原始数据多长】 不管填充的内容,计算时不要学pad
def build_array_nmt(lines, vocab, num_steps):"""将机器翻译的文本序列转换成小批量"""lines = [vocab[l] for l in lines]lines = [l + [vocab['<eos>']] for l in lines]array = torch.tensor([truncate_pad(l, num_steps, vocab['<pad>']) for l in lines])valid_len = (array != vocab['<pad>']).type(torch.int32).sum(1)return array, valid_len#@save
def load_data_nmt(batch_size, num_steps, num_examples=600):"""返回翻译数据集的迭代器和词表"""text = preprocess_nmt(read_data_nmt())source, target = tokenize_nmt(text, num_examples)src_vocab = d2l.Vocab(source, min_freq=2,reserved_tokens=['<pad>', '<bos>', '<eos>'])tgt_vocab = d2l.Vocab(target, min_freq=2,reserved_tokens=['<pad>', '<bos>', '<eos>'])src_array, src_valid_len = build_array_nmt(source, src_vocab, num_steps)tgt_array, tgt_valid_len = build_array_nmt(target, tgt_vocab, num_steps)data_arrays = (src_array, src_valid_len, tgt_array, tgt_valid_len)data_iter = d2l.load_array(data_arrays, batch_size)return data_iter, src_vocab, tgt_vocabtrain_iter, src_vocab, tgt_vocab = load_data_nmt(batch_size=2, num_steps=8)
for X, X_valid_len, Y, Y_valid_len in train_iter:print('X:', X.type(torch.int32))print('X的有效长度:', X_valid_len)print('Y:', Y.type(torch.int32))print('Y的有效长度:', Y_valid_len)break
相关文章:
动手学深度学习60 机器翻译与数据集
1. 机器翻译与数据集 import os import torch from d2l import torch as d2l#save d2l.DATA_HUB[fra-eng] (d2l.DATA_URL fra-eng.zip,94646ad1522d915e7b0f9296181140edcf86a4f5)#save def read_data_nmt():"""载入“英语-法语”数据集"&qu…...
Python网络爬虫技术
Python网络爬虫技术详解 引言 网络爬虫(Web Crawler),又称网络蜘蛛(Web Spider)或网络机器人(Web Robot),是一种按照一定规则自动抓取互联网信息的程序或脚本。它们通过遍历网页链…...
黑马程序员-redis项目实践笔记1
目录 一、 基于Session实现登录 发送验证码 验证用户输入验证码 校验登录状态 Redis代替Session登录 发送验证码修改 验证用户输入验证码 登录拦截器的优化 二、 商铺查询缓存 缓存更新策略 数据库和缓存不一致解决方案 缓存更新策略的最佳实践方案 实现商铺缓…...
ES-入门聚合查询
url 请求地址 http://192.168.1.108:9200/shopping/_search {"aggs": { //聚合操作"price_group":{ //名称,随意起名"terms":{ //分组"field": "price" //分组字段}}} } 查询出来的结果是 查询结果中价格的平均值 {&q…...
七维大脑: 探索人类认知的未来之路
七维大脑: 探索人类认知的未来之路 随着科技的不断发展,人们对于大脑的认知也在不断扩展。近年来,科学家们提出了一个名为“七维大脑”的概念,试图通过七个维度来理解人类的认知过程。这个概念的提出,让人们开始思考&…...
spring |Spring Security安全框架 —— 认证流程实现
文章目录 开头简介环境搭建入门使用1、认证1、实体类2、Controller层3、Service层3.1、接口3.2、实现类3.3、实现类:UserDetailsServiceImpl 4、Mapper层3、自定义token认证filter 注意事项小结 开头 Spring Security 官方网址:Spring Security官网 开…...
Django+vue自动化测试平台---正式开源!!!
自动化测试:接口、Web UI 与 App 的全面探索 在此郑重声明:本文内容未经本人同意,不得随意转载。若有违者,必将追究其法律责任。同时,禁止对相关源码进行任何形式的售卖行为,本内容仅供学习使用。 Git 地…...
电子电气架构 --- 智能网联汽车未来是什么样子?
我是穿拖鞋的汉子,魔都中坚持长期主义的汽车电子工程师。 老规矩,分享一段喜欢的文字,避免自己成为高知识低文化的工程师: 屏蔽力是信息过载时代一个人的特殊竞争力,任何消耗你的人和事,多看一眼都是你的不对。非必要不费力证明自己,无利益不试图说服别人,是精神上的节…...
docker安装elasticsearch(es)+kibana
目录 docker安装elasticsearch 一.准备工作 1.打开docker目录 2.创建elasticsearch目录 3.打开elasticsearch目录 4.拉取elasticsearch镜像 5.检查镜像 二.挂载目录 1.创建数据挂载目录 2.创建配置挂载目录 3.创建插件挂载目录 4.权限授权 三.编辑配置 1.打开con…...
大厂面试真题-说说redis的雪崩、击穿和穿透
缓存雪崩、击穿、穿透是缓存系统中常见的三种问题,它们都会对系统的性能和稳定性造成严重影响。以下是对这三种问题的详细解释以及相应的解决方案: 一、缓存雪崩 问题解释: 缓存雪崩指的是因为某些原因导致缓存中大量的数据同时失效或过期…...
【Spring】获取Cookie和Session(@CookieValue()和@SessionAttribute())
获取 Cookie 传统获取 Cookie 这是没有 Spring 的时候,用 Servlet 来获取(获取所有的 Cookie) Spring MVC 是基于 Servlet API 构建的原始 Web 框架,也是在 Servlet 的基础上实现的 RequestMapping("/getcookie") …...
【C++打怪之路Lv8】-- string类
🌈 个人主页:白子寰 🔥 分类专栏:重生之我在学Linux,C打怪之路,python从入门到精通,数据结构,C语言,C语言题集👈 希望得到您的订阅和支持~ 💡 坚持…...
【JS】node.js压缩文件的方式
在 Node.js 中,有多种方法可以压缩文件。以下是几种常见的压缩方式及其对应的代码示例: 使用 archiver 压缩成 ZIP 文件使用 zlib 压缩成 GZIP 文件使用 tar 压缩成 TAR 文件 1. 使用 archiver 压缩成 ZIP 文件 archiver 是一个功能强大的库ÿ…...
2024免费mac苹果电脑清理垃圾软件CleanMyMac X4.15.8
对于苹果电脑用户来说,设备上积累的垃圾文件可能会导致存储空间变得紧张,影响电脑的性能和使用体验。尤其是那些经常下载和安装新应用、编辑视频或处理大量照片的用户,更容易感受到存储空间的压力。面对这种情况,寻找一种有效的苹…...
MPA-SVM多变量回归预测|海洋捕食者优化算法-支持向量机|Matalb
目录 一、程序及算法内容介绍: 基本内容: 亮点与优势: 二、实际运行效果: 三、算法介绍: 四、完整程序下载: 一、程序及算法内容介绍: 基本内容: 本代码基于Matlab平台编译&am…...
【uni-app】HBuilderX安装uni-ui组件
目录 1、官网找到入口 2、登录帐号 3、打开HuilderX 4、选择要应用的项目 5、查看是否安装完成 6、按需安装 7、安装完毕要重启 8、应用 前言:uniapp项目使用uni-ui组件方式很多,有npm安装等,或直接创建uni-ui项目,使用un…...
ROS2 通信三大件之动作 -- Action
通信最后一个,也是不太容易理解的方式action,复杂且重要 1、创建action数据结构 创建工作空间和模块就不多说了 在模块 src/action_moudle/action/Counter.action 下创建文件 Counter.action int32 target # Goal: 目标 --- int32 current_value…...
大数据治理:构建数据驱动的智能决策体系
✅作者简介:2022年博客新星 第八。热爱国学的Java后端开发者,修心和技术同步精进。 🍎个人主页:Java Fans的博客 🍊个人信条:不迁怒,不贰过。小知识,大智慧。 💞当前专栏…...
k8s微服务
一 、什么是微服务 用控制器来完成集群的工作负载,那么应用如何暴漏出去?需要通过微服务暴漏出去后才能被访问 Service是一组提供相同服务的Pod对外开放的接口。 借助Service,应用可以实现服务发现和负载均衡。 service默认只支持4层负载均…...
【Java】Java 的反射机制(一):反射概述
Java 的反射机制(一):反射概述 1.反射概述1.1 静态语言 / 动态语言1.1.1 动态语言1.1.2 静态语言 1.2 Java Reflection1.3 Java 反射机制提供的功能1.4 反射的优点和缺陷1.5 反射相关的主要 API1.6 代码示例 2.Class 类2.1 什么是 Class 类2.…...
1.3 VSCode安装与环境配置
进入网址Visual Studio Code - Code Editing. Redefined下载.deb文件,然后打开终端,进入下载文件夹,键入命令 sudo dpkg -i code_1.100.3-1748872405_amd64.deb 在终端键入命令code即启动vscode 需要安装插件列表 1.Chinese简化 2.ros …...
AI编程--插件对比分析:CodeRider、GitHub Copilot及其他
AI编程插件对比分析:CodeRider、GitHub Copilot及其他 随着人工智能技术的快速发展,AI编程插件已成为提升开发者生产力的重要工具。CodeRider和GitHub Copilot作为市场上的领先者,分别以其独特的特性和生态系统吸引了大量开发者。本文将从功…...
自然语言处理——Transformer
自然语言处理——Transformer 自注意力机制多头注意力机制Transformer 虽然循环神经网络可以对具有序列特性的数据非常有效,它能挖掘数据中的时序信息以及语义信息,但是它有一个很大的缺陷——很难并行化。 我们可以考虑用CNN来替代RNN,但是…...
3403. 从盒子中找出字典序最大的字符串 I
3403. 从盒子中找出字典序最大的字符串 I 题目链接:3403. 从盒子中找出字典序最大的字符串 I 代码如下: class Solution { public:string answerString(string word, int numFriends) {if (numFriends 1) {return word;}string res;for (int i 0;i &…...
3-11单元格区域边界定位(End属性)学习笔记
返回一个Range 对象,只读。该对象代表包含源区域的区域上端下端左端右端的最后一个单元格。等同于按键 End 向上键(End(xlUp))、End向下键(End(xlDown))、End向左键(End(xlToLeft)End向右键(End(xlToRight)) 注意:它移动的位置必须是相连的有内容的单元格…...
Mac下Android Studio扫描根目录卡死问题记录
环境信息 操作系统: macOS 15.5 (Apple M2芯片)Android Studio版本: Meerkat Feature Drop | 2024.3.2 Patch 1 (Build #AI-243.26053.27.2432.13536105, 2025年5月22日构建) 问题现象 在项目开发过程中,提示一个依赖外部头文件的cpp源文件需要同步,点…...
PAN/FPN
import torch import torch.nn as nn import torch.nn.functional as F import mathclass LowResQueryHighResKVAttention(nn.Module):"""方案 1: 低分辨率特征 (Query) 查询高分辨率特征 (Key, Value).输出分辨率与低分辨率输入相同。"""def __…...
处理vxe-table 表尾数据是单独一个接口,表格tableData数据更新后,需要点击两下,表尾才是正确的
修改bug思路: 分别把 tabledata 和 表尾相关数据 console.log() 发现 更新数据先后顺序不对 settimeout延迟查询表格接口 ——测试可行 升级↑:async await 等接口返回后再开始下一个接口查询 ________________________________________________________…...
Python+ZeroMQ实战:智能车辆状态监控与模拟模式自动切换
目录 关键点 技术实现1 技术实现2 摘要: 本文将介绍如何利用Python和ZeroMQ消息队列构建一个智能车辆状态监控系统。系统能够根据时间策略自动切换驾驶模式(自动驾驶、人工驾驶、远程驾驶、主动安全),并通过实时消息推送更新车…...
用鸿蒙HarmonyOS5实现中国象棋小游戏的过程
下面是一个基于鸿蒙OS (HarmonyOS) 的中国象棋小游戏的实现代码。这个实现使用Java语言和鸿蒙的Ability框架。 1. 项目结构 /src/main/java/com/example/chinesechess/├── MainAbilitySlice.java // 主界面逻辑├── ChessView.java // 游戏视图和逻辑├──…...
