当前位置: 首页 > news >正文

动手学深度学习60 机器翻译与数据集

1. 机器翻译与数据集

import os
import torch
from d2l import torch as d2l#@save
d2l.DATA_HUB['fra-eng'] = (d2l.DATA_URL + 'fra-eng.zip','94646ad1522d915e7b0f9296181140edcf86a4f5')#@save
def read_data_nmt():"""载入“英语-法语”数据集"""data_dir = d2l.download_extract('fra-eng')with open(os.path.join(data_dir, 'fra.txt'), 'r',encoding='utf-8') as f:return f.read()raw_text = read_data_nmt()
print(raw_text[:75])#@save
# 标点符号也要翻译
def preprocess_nmt(text):"""预处理“英语-法语”数据集"""def no_space(char, prev_char):return char in set(',.!?') and prev_char != ' '# 使用空格替换不间断空格# 使用小写字母替换大写字母text = text.replace('\u202f', ' ').replace('\xa0', ' ').lower()# 在单词和标点符号之间插入空格out = [' ' + char if i > 0 and no_space(char, text[i - 1]) else charfor i, char in enumerate(text)]return ''.join(out)text = preprocess_nmt(raw_text)
print(text[:80])#@save
def tokenize_nmt(text, num_examples=None):"""词元化“英语-法语”数据数据集"""source, target = [], []for i, line in enumerate(text.split('\n')):if num_examples and i > num_examples:breakparts = line.split('\t')if len(parts) == 2:source.append(parts[0].split(' '))target.append(parts[1].split(' '))return source, target
#  英语   法语
source, target = tokenize_nmt(text)
source[:6], target[:6]#@save
def show_list_len_pair_hist(legend, xlabel, ylabel, xlist, ylist):"""绘制列表长度对的直方图"""d2l.set_figsize()_, _, patches = d2l.plt.hist([[len(l) for l in xlist], [len(l) for l in ylist]])d2l.plt.xlabel(xlabel)d2l.plt.ylabel(ylabel)for patch in patches[1].patches:patch.set_hatch('/')d2l.plt.legend(legend)show_list_len_pair_hist(['source', 'target'], '# tokens per sequence','count', source, target);# <pad> 填充  <bos> 句子开始  <eos> 句子结束
# 词小于等于2 就不要了。
src_vocab = d2l.Vocab(source, min_freq=2,reserved_tokens=['<pad>', '<bos>', '<eos>'])
len(src_vocab)# 怎么让句子变成一样的长度  填充或者删除。
#@save
def truncate_pad(line, num_steps, padding_token):"""截断或填充文本序列"""if len(line) > num_steps:return line[:num_steps]  # 截断return line + [padding_token] * (num_steps - len(line))  # 填充truncate_pad(src_vocab[source[0]], 10, src_vocab['<pad>'])#@save
# valid_len 告诉句子实际长度是多少【记录原始数据多长】 不管填充的内容,计算时不要学pad
def build_array_nmt(lines, vocab, num_steps):"""将机器翻译的文本序列转换成小批量"""lines = [vocab[l] for l in lines]lines = [l + [vocab['<eos>']] for l in lines]array = torch.tensor([truncate_pad(l, num_steps, vocab['<pad>']) for l in lines])valid_len = (array != vocab['<pad>']).type(torch.int32).sum(1)return array, valid_len#@save
def load_data_nmt(batch_size, num_steps, num_examples=600):"""返回翻译数据集的迭代器和词表"""text = preprocess_nmt(read_data_nmt())source, target = tokenize_nmt(text, num_examples)src_vocab = d2l.Vocab(source, min_freq=2,reserved_tokens=['<pad>', '<bos>', '<eos>'])tgt_vocab = d2l.Vocab(target, min_freq=2,reserved_tokens=['<pad>', '<bos>', '<eos>'])src_array, src_valid_len = build_array_nmt(source, src_vocab, num_steps)tgt_array, tgt_valid_len = build_array_nmt(target, tgt_vocab, num_steps)data_arrays = (src_array, src_valid_len, tgt_array, tgt_valid_len)data_iter = d2l.load_array(data_arrays, batch_size)return data_iter, src_vocab, tgt_vocabtrain_iter, src_vocab, tgt_vocab = load_data_nmt(batch_size=2, num_steps=8)
for X, X_valid_len, Y, Y_valid_len in train_iter:print('X:', X.type(torch.int32))print('X的有效长度:', X_valid_len)print('Y:', Y.type(torch.int32))print('Y的有效长度:', Y_valid_len)break

相关文章:

动手学深度学习60 机器翻译与数据集

1. 机器翻译与数据集 import os import torch from d2l import torch as d2l#save d2l.DATA_HUB[fra-eng] (d2l.DATA_URL fra-eng.zip,94646ad1522d915e7b0f9296181140edcf86a4f5)#save def read_data_nmt():"""载入“英语&#xff0d;法语”数据集"&qu…...

Python网络爬虫技术

Python网络爬虫技术详解 引言 网络爬虫&#xff08;Web Crawler&#xff09;&#xff0c;又称网络蜘蛛&#xff08;Web Spider&#xff09;或网络机器人&#xff08;Web Robot&#xff09;&#xff0c;是一种按照一定规则自动抓取互联网信息的程序或脚本。它们通过遍历网页链…...

黑马程序员-redis项目实践笔记1

目录 一、 基于Session实现登录 发送验证码 验证用户输入验证码 校验登录状态 Redis代替Session登录 发送验证码修改 验证用户输入验证码 登录拦截器的优化 二、 商铺查询缓存 缓存更新策略 数据库和缓存不一致解决方案 缓存更新策略的最佳实践方案 实现商铺缓…...

ES-入门聚合查询

url 请求地址 http://192.168.1.108:9200/shopping/_search {"aggs": { //聚合操作"price_group":{ //名称,随意起名"terms":{ //分组"field": "price" //分组字段}}} } 查询出来的结果是 查询结果中价格的平均值 {&q…...

七维大脑: 探索人类认知的未来之路

七维大脑&#xff1a; 探索人类认知的未来之路 随着科技的不断发展&#xff0c;人们对于大脑的认知也在不断扩展。近年来&#xff0c;科学家们提出了一个名为“七维大脑”的概念&#xff0c;试图通过七个维度来理解人类的认知过程。这个概念的提出&#xff0c;让人们开始思考&…...

spring |Spring Security安全框架 —— 认证流程实现

文章目录 开头简介环境搭建入门使用1、认证1、实体类2、Controller层3、Service层3.1、接口3.2、实现类3.3、实现类&#xff1a;UserDetailsServiceImpl 4、Mapper层3、自定义token认证filter 注意事项小结 开头 Spring Security 官方网址&#xff1a;Spring Security官网 开…...

Django+vue自动化测试平台---正式开源!!!

自动化测试&#xff1a;接口、Web UI 与 App 的全面探索 在此郑重声明&#xff1a;本文内容未经本人同意&#xff0c;不得随意转载。若有违者&#xff0c;必将追究其法律责任。同时&#xff0c;禁止对相关源码进行任何形式的售卖行为&#xff0c;本内容仅供学习使用。 Git 地…...

电子电气架构 --- 智能网联汽车未来是什么样子?

我是穿拖鞋的汉子,魔都中坚持长期主义的汽车电子工程师。 老规矩,分享一段喜欢的文字,避免自己成为高知识低文化的工程师: 屏蔽力是信息过载时代一个人的特殊竞争力,任何消耗你的人和事,多看一眼都是你的不对。非必要不费力证明自己,无利益不试图说服别人,是精神上的节…...

docker安装elasticsearch(es)+kibana

目录 docker安装elasticsearch 一.准备工作 1.打开docker目录 2.创建elasticsearch目录 3.打开elasticsearch目录 4.拉取elasticsearch镜像 5.检查镜像 二.挂载目录 1.创建数据挂载目录 2.创建配置挂载目录 3.创建插件挂载目录 4.权限授权 三.编辑配置 1.打开con…...

大厂面试真题-说说redis的雪崩、击穿和穿透

缓存雪崩、击穿、穿透是缓存系统中常见的三种问题&#xff0c;它们都会对系统的性能和稳定性造成严重影响。以下是对这三种问题的详细解释以及相应的解决方案&#xff1a; 一、缓存雪崩 问题解释&#xff1a; 缓存雪崩指的是因为某些原因导致缓存中大量的数据同时失效或过期…...

【Spring】获取Cookie和Session(@CookieValue()和@SessionAttribute())

获取 Cookie 传统获取 Cookie 这是没有 Spring 的时候&#xff0c;用 Servlet 来获取&#xff08;获取所有的 Cookie&#xff09; Spring MVC 是基于 Servlet API 构建的原始 Web 框架&#xff0c;也是在 Servlet 的基础上实现的 RequestMapping("/getcookie") …...

【C++打怪之路Lv8】-- string类

&#x1f308; 个人主页&#xff1a;白子寰 &#x1f525; 分类专栏&#xff1a;重生之我在学Linux&#xff0c;C打怪之路&#xff0c;python从入门到精通&#xff0c;数据结构&#xff0c;C语言&#xff0c;C语言题集&#x1f448; 希望得到您的订阅和支持~ &#x1f4a1; 坚持…...

【JS】node.js压缩文件的方式

在 Node.js 中&#xff0c;有多种方法可以压缩文件。以下是几种常见的压缩方式及其对应的代码示例&#xff1a; 使用 archiver 压缩成 ZIP 文件使用 zlib 压缩成 GZIP 文件使用 tar 压缩成 TAR 文件 1. 使用 archiver 压缩成 ZIP 文件 archiver 是一个功能强大的库&#xff…...

2024免费mac苹果电脑清理垃圾软件CleanMyMac X4.15.8

对于苹果电脑用户来说&#xff0c;设备上积累的垃圾文件可能会导致存储空间变得紧张&#xff0c;影响电脑的性能和使用体验。尤其是那些经常下载和安装新应用、编辑视频或处理大量照片的用户&#xff0c;更容易感受到存储空间的压力。面对这种情况&#xff0c;寻找一种有效的苹…...

MPA-SVM多变量回归预测|海洋捕食者优化算法-支持向量机|Matalb

目录 一、程序及算法内容介绍&#xff1a; 基本内容&#xff1a; 亮点与优势&#xff1a; 二、实际运行效果&#xff1a; 三、算法介绍&#xff1a; 四、完整程序下载&#xff1a; 一、程序及算法内容介绍&#xff1a; 基本内容&#xff1a; 本代码基于Matlab平台编译&am…...

【uni-app】HBuilderX安装uni-ui组件

目录 1、官网找到入口 2、登录帐号 3、打开HuilderX 4、选择要应用的项目 5、查看是否安装完成 6、按需安装 7、安装完毕要重启 8、应用 前言&#xff1a;uniapp项目使用uni-ui组件方式很多&#xff0c;有npm安装等&#xff0c;或直接创建uni-ui项目&#xff0c;使用un…...

ROS2 通信三大件之动作 -- Action

通信最后一个&#xff0c;也是不太容易理解的方式action&#xff0c;复杂且重要 1、创建action数据结构 创建工作空间和模块就不多说了 在模块 src/action_moudle/action/Counter.action 下创建文件 Counter.action int32 target # Goal: 目标 --- int32 current_value…...

大数据治理:构建数据驱动的智能决策体系

✅作者简介&#xff1a;2022年博客新星 第八。热爱国学的Java后端开发者&#xff0c;修心和技术同步精进。 &#x1f34e;个人主页&#xff1a;Java Fans的博客 &#x1f34a;个人信条&#xff1a;不迁怒&#xff0c;不贰过。小知识&#xff0c;大智慧。 &#x1f49e;当前专栏…...

k8s微服务

一 、什么是微服务 用控制器来完成集群的工作负载&#xff0c;那么应用如何暴漏出去&#xff1f;需要通过微服务暴漏出去后才能被访问 Service是一组提供相同服务的Pod对外开放的接口。 借助Service&#xff0c;应用可以实现服务发现和负载均衡。 service默认只支持4层负载均…...

【Java】Java 的反射机制(一):反射概述

Java 的反射机制&#xff08;一&#xff09;&#xff1a;反射概述 1.反射概述1.1 静态语言 / 动态语言1.1.1 动态语言1.1.2 静态语言 1.2 Java Reflection1.3 Java 反射机制提供的功能1.4 反射的优点和缺陷1.5 反射相关的主要 API1.6 代码示例 2.Class 类2.1 什么是 Class 类2.…...

零门槛NAS搭建:WinNAS如何让普通电脑秒变私有云?

一、核心优势&#xff1a;专为Windows用户设计的极简NAS WinNAS由深圳耘想存储科技开发&#xff0c;是一款收费低廉但功能全面的Windows NAS工具&#xff0c;主打“无学习成本部署” 。与其他NAS软件相比&#xff0c;其优势在于&#xff1a; 无需硬件改造&#xff1a;将任意W…...

7.4.分块查找

一.分块查找的算法思想&#xff1a; 1.实例&#xff1a; 以上述图片的顺序表为例&#xff0c; 该顺序表的数据元素从整体来看是乱序的&#xff0c;但如果把这些数据元素分成一块一块的小区间&#xff0c; 第一个区间[0,1]索引上的数据元素都是小于等于10的&#xff0c; 第二…...

Qt/C++开发监控GB28181系统/取流协议/同时支持udp/tcp被动/tcp主动

一、前言说明 在2011版本的gb28181协议中&#xff0c;拉取视频流只要求udp方式&#xff0c;从2016开始要求新增支持tcp被动和tcp主动两种方式&#xff0c;udp理论上会丢包的&#xff0c;所以实际使用过程可能会出现画面花屏的情况&#xff0c;而tcp肯定不丢包&#xff0c;起码…...

视频字幕质量评估的大规模细粒度基准

大家读完觉得有帮助记得关注和点赞&#xff01;&#xff01;&#xff01; 摘要 视频字幕在文本到视频生成任务中起着至关重要的作用&#xff0c;因为它们的质量直接影响所生成视频的语义连贯性和视觉保真度。尽管大型视觉-语言模型&#xff08;VLMs&#xff09;在字幕生成方面…...

Ascend NPU上适配Step-Audio模型

1 概述 1.1 简述 Step-Audio 是业界首个集语音理解与生成控制一体化的产品级开源实时语音对话系统&#xff0c;支持多语言对话&#xff08;如 中文&#xff0c;英文&#xff0c;日语&#xff09;&#xff0c;语音情感&#xff08;如 开心&#xff0c;悲伤&#xff09;&#x…...

docker 部署发现spring.profiles.active 问题

报错&#xff1a; org.springframework.boot.context.config.InvalidConfigDataPropertyException: Property spring.profiles.active imported from location class path resource [application-test.yml] is invalid in a profile specific resource [origin: class path re…...

uniapp手机号一键登录保姆级教程(包含前端和后端)

目录 前置条件创建uniapp项目并关联uniClound云空间开启一键登录模块并开通一键登录服务编写云函数并上传部署获取手机号流程(第一种) 前端直接调用云函数获取手机号&#xff08;第三种&#xff09;后台调用云函数获取手机号 错误码常见问题 前置条件 手机安装有sim卡手机开启…...

【网络安全】开源系统getshell漏洞挖掘

审计过程&#xff1a; 在入口文件admin/index.php中&#xff1a; 用户可以通过m,c,a等参数控制加载的文件和方法&#xff0c;在app/system/entrance.php中存在重点代码&#xff1a; 当M_TYPE system并且M_MODULE include时&#xff0c;会设置常量PATH_OWN_FILE为PATH_APP.M_T…...

Web后端基础(基础知识)

BS架构&#xff1a;Browser/Server&#xff0c;浏览器/服务器架构模式。客户端只需要浏览器&#xff0c;应用程序的逻辑和数据都存储在服务端。 优点&#xff1a;维护方便缺点&#xff1a;体验一般 CS架构&#xff1a;Client/Server&#xff0c;客户端/服务器架构模式。需要单独…...

FTXUI::Dom 模块

DOM 模块定义了分层的 FTXUI::Element 树&#xff0c;可用于构建复杂的终端界面&#xff0c;支持响应终端尺寸变化。 namespace ftxui {...// 定义文档 定义布局盒子 Element document vbox({// 设置文本 设置加粗 设置文本颜色text("The window") | bold | color(…...