动手学深度学习60 机器翻译与数据集
1. 机器翻译与数据集
import os
import torch
from d2l import torch as d2l#@save
d2l.DATA_HUB['fra-eng'] = (d2l.DATA_URL + 'fra-eng.zip','94646ad1522d915e7b0f9296181140edcf86a4f5')#@save
def read_data_nmt():"""载入“英语-法语”数据集"""data_dir = d2l.download_extract('fra-eng')with open(os.path.join(data_dir, 'fra.txt'), 'r',encoding='utf-8') as f:return f.read()raw_text = read_data_nmt()
print(raw_text[:75])#@save
# 标点符号也要翻译
def preprocess_nmt(text):"""预处理“英语-法语”数据集"""def no_space(char, prev_char):return char in set(',.!?') and prev_char != ' '# 使用空格替换不间断空格# 使用小写字母替换大写字母text = text.replace('\u202f', ' ').replace('\xa0', ' ').lower()# 在单词和标点符号之间插入空格out = [' ' + char if i > 0 and no_space(char, text[i - 1]) else charfor i, char in enumerate(text)]return ''.join(out)text = preprocess_nmt(raw_text)
print(text[:80])#@save
def tokenize_nmt(text, num_examples=None):"""词元化“英语-法语”数据数据集"""source, target = [], []for i, line in enumerate(text.split('\n')):if num_examples and i > num_examples:breakparts = line.split('\t')if len(parts) == 2:source.append(parts[0].split(' '))target.append(parts[1].split(' '))return source, target
# 英语 法语
source, target = tokenize_nmt(text)
source[:6], target[:6]#@save
def show_list_len_pair_hist(legend, xlabel, ylabel, xlist, ylist):"""绘制列表长度对的直方图"""d2l.set_figsize()_, _, patches = d2l.plt.hist([[len(l) for l in xlist], [len(l) for l in ylist]])d2l.plt.xlabel(xlabel)d2l.plt.ylabel(ylabel)for patch in patches[1].patches:patch.set_hatch('/')d2l.plt.legend(legend)show_list_len_pair_hist(['source', 'target'], '# tokens per sequence','count', source, target);# <pad> 填充 <bos> 句子开始 <eos> 句子结束
# 词小于等于2 就不要了。
src_vocab = d2l.Vocab(source, min_freq=2,reserved_tokens=['<pad>', '<bos>', '<eos>'])
len(src_vocab)# 怎么让句子变成一样的长度 填充或者删除。
#@save
def truncate_pad(line, num_steps, padding_token):"""截断或填充文本序列"""if len(line) > num_steps:return line[:num_steps] # 截断return line + [padding_token] * (num_steps - len(line)) # 填充truncate_pad(src_vocab[source[0]], 10, src_vocab['<pad>'])#@save
# valid_len 告诉句子实际长度是多少【记录原始数据多长】 不管填充的内容,计算时不要学pad
def build_array_nmt(lines, vocab, num_steps):"""将机器翻译的文本序列转换成小批量"""lines = [vocab[l] for l in lines]lines = [l + [vocab['<eos>']] for l in lines]array = torch.tensor([truncate_pad(l, num_steps, vocab['<pad>']) for l in lines])valid_len = (array != vocab['<pad>']).type(torch.int32).sum(1)return array, valid_len#@save
def load_data_nmt(batch_size, num_steps, num_examples=600):"""返回翻译数据集的迭代器和词表"""text = preprocess_nmt(read_data_nmt())source, target = tokenize_nmt(text, num_examples)src_vocab = d2l.Vocab(source, min_freq=2,reserved_tokens=['<pad>', '<bos>', '<eos>'])tgt_vocab = d2l.Vocab(target, min_freq=2,reserved_tokens=['<pad>', '<bos>', '<eos>'])src_array, src_valid_len = build_array_nmt(source, src_vocab, num_steps)tgt_array, tgt_valid_len = build_array_nmt(target, tgt_vocab, num_steps)data_arrays = (src_array, src_valid_len, tgt_array, tgt_valid_len)data_iter = d2l.load_array(data_arrays, batch_size)return data_iter, src_vocab, tgt_vocabtrain_iter, src_vocab, tgt_vocab = load_data_nmt(batch_size=2, num_steps=8)
for X, X_valid_len, Y, Y_valid_len in train_iter:print('X:', X.type(torch.int32))print('X的有效长度:', X_valid_len)print('Y:', Y.type(torch.int32))print('Y的有效长度:', Y_valid_len)break
相关文章:
动手学深度学习60 机器翻译与数据集
1. 机器翻译与数据集 import os import torch from d2l import torch as d2l#save d2l.DATA_HUB[fra-eng] (d2l.DATA_URL fra-eng.zip,94646ad1522d915e7b0f9296181140edcf86a4f5)#save def read_data_nmt():"""载入“英语-法语”数据集"&qu…...
Python网络爬虫技术
Python网络爬虫技术详解 引言 网络爬虫(Web Crawler),又称网络蜘蛛(Web Spider)或网络机器人(Web Robot),是一种按照一定规则自动抓取互联网信息的程序或脚本。它们通过遍历网页链…...

黑马程序员-redis项目实践笔记1
目录 一、 基于Session实现登录 发送验证码 验证用户输入验证码 校验登录状态 Redis代替Session登录 发送验证码修改 验证用户输入验证码 登录拦截器的优化 二、 商铺查询缓存 缓存更新策略 数据库和缓存不一致解决方案 缓存更新策略的最佳实践方案 实现商铺缓…...

ES-入门聚合查询
url 请求地址 http://192.168.1.108:9200/shopping/_search {"aggs": { //聚合操作"price_group":{ //名称,随意起名"terms":{ //分组"field": "price" //分组字段}}} } 查询出来的结果是 查询结果中价格的平均值 {&q…...
七维大脑: 探索人类认知的未来之路
七维大脑: 探索人类认知的未来之路 随着科技的不断发展,人们对于大脑的认知也在不断扩展。近年来,科学家们提出了一个名为“七维大脑”的概念,试图通过七个维度来理解人类的认知过程。这个概念的提出,让人们开始思考&…...

spring |Spring Security安全框架 —— 认证流程实现
文章目录 开头简介环境搭建入门使用1、认证1、实体类2、Controller层3、Service层3.1、接口3.2、实现类3.3、实现类:UserDetailsServiceImpl 4、Mapper层3、自定义token认证filter 注意事项小结 开头 Spring Security 官方网址:Spring Security官网 开…...
Django+vue自动化测试平台---正式开源!!!
自动化测试:接口、Web UI 与 App 的全面探索 在此郑重声明:本文内容未经本人同意,不得随意转载。若有违者,必将追究其法律责任。同时,禁止对相关源码进行任何形式的售卖行为,本内容仅供学习使用。 Git 地…...

电子电气架构 --- 智能网联汽车未来是什么样子?
我是穿拖鞋的汉子,魔都中坚持长期主义的汽车电子工程师。 老规矩,分享一段喜欢的文字,避免自己成为高知识低文化的工程师: 屏蔽力是信息过载时代一个人的特殊竞争力,任何消耗你的人和事,多看一眼都是你的不对。非必要不费力证明自己,无利益不试图说服别人,是精神上的节…...

docker安装elasticsearch(es)+kibana
目录 docker安装elasticsearch 一.准备工作 1.打开docker目录 2.创建elasticsearch目录 3.打开elasticsearch目录 4.拉取elasticsearch镜像 5.检查镜像 二.挂载目录 1.创建数据挂载目录 2.创建配置挂载目录 3.创建插件挂载目录 4.权限授权 三.编辑配置 1.打开con…...
大厂面试真题-说说redis的雪崩、击穿和穿透
缓存雪崩、击穿、穿透是缓存系统中常见的三种问题,它们都会对系统的性能和稳定性造成严重影响。以下是对这三种问题的详细解释以及相应的解决方案: 一、缓存雪崩 问题解释: 缓存雪崩指的是因为某些原因导致缓存中大量的数据同时失效或过期…...

【Spring】获取Cookie和Session(@CookieValue()和@SessionAttribute())
获取 Cookie 传统获取 Cookie 这是没有 Spring 的时候,用 Servlet 来获取(获取所有的 Cookie) Spring MVC 是基于 Servlet API 构建的原始 Web 框架,也是在 Servlet 的基础上实现的 RequestMapping("/getcookie") …...

【C++打怪之路Lv8】-- string类
🌈 个人主页:白子寰 🔥 分类专栏:重生之我在学Linux,C打怪之路,python从入门到精通,数据结构,C语言,C语言题集👈 希望得到您的订阅和支持~ 💡 坚持…...
【JS】node.js压缩文件的方式
在 Node.js 中,有多种方法可以压缩文件。以下是几种常见的压缩方式及其对应的代码示例: 使用 archiver 压缩成 ZIP 文件使用 zlib 压缩成 GZIP 文件使用 tar 压缩成 TAR 文件 1. 使用 archiver 压缩成 ZIP 文件 archiver 是一个功能强大的库ÿ…...

2024免费mac苹果电脑清理垃圾软件CleanMyMac X4.15.8
对于苹果电脑用户来说,设备上积累的垃圾文件可能会导致存储空间变得紧张,影响电脑的性能和使用体验。尤其是那些经常下载和安装新应用、编辑视频或处理大量照片的用户,更容易感受到存储空间的压力。面对这种情况,寻找一种有效的苹…...

MPA-SVM多变量回归预测|海洋捕食者优化算法-支持向量机|Matalb
目录 一、程序及算法内容介绍: 基本内容: 亮点与优势: 二、实际运行效果: 三、算法介绍: 四、完整程序下载: 一、程序及算法内容介绍: 基本内容: 本代码基于Matlab平台编译&am…...

【uni-app】HBuilderX安装uni-ui组件
目录 1、官网找到入口 2、登录帐号 3、打开HuilderX 4、选择要应用的项目 5、查看是否安装完成 6、按需安装 7、安装完毕要重启 8、应用 前言:uniapp项目使用uni-ui组件方式很多,有npm安装等,或直接创建uni-ui项目,使用un…...

ROS2 通信三大件之动作 -- Action
通信最后一个,也是不太容易理解的方式action,复杂且重要 1、创建action数据结构 创建工作空间和模块就不多说了 在模块 src/action_moudle/action/Counter.action 下创建文件 Counter.action int32 target # Goal: 目标 --- int32 current_value…...

大数据治理:构建数据驱动的智能决策体系
✅作者简介:2022年博客新星 第八。热爱国学的Java后端开发者,修心和技术同步精进。 🍎个人主页:Java Fans的博客 🍊个人信条:不迁怒,不贰过。小知识,大智慧。 💞当前专栏…...

k8s微服务
一 、什么是微服务 用控制器来完成集群的工作负载,那么应用如何暴漏出去?需要通过微服务暴漏出去后才能被访问 Service是一组提供相同服务的Pod对外开放的接口。 借助Service,应用可以实现服务发现和负载均衡。 service默认只支持4层负载均…...

【Java】Java 的反射机制(一):反射概述
Java 的反射机制(一):反射概述 1.反射概述1.1 静态语言 / 动态语言1.1.1 动态语言1.1.2 静态语言 1.2 Java Reflection1.3 Java 反射机制提供的功能1.4 反射的优点和缺陷1.5 反射相关的主要 API1.6 代码示例 2.Class 类2.1 什么是 Class 类2.…...
谷歌浏览器插件
项目中有时候会用到插件 sync-cookie-extension1.0.0:开发环境同步测试 cookie 至 localhost,便于本地请求服务携带 cookie 参考地址:https://juejin.cn/post/7139354571712757767 里面有源码下载下来,加在到扩展即可使用FeHelp…...
基于大模型的 UI 自动化系统
基于大模型的 UI 自动化系统 下面是一个完整的 Python 系统,利用大模型实现智能 UI 自动化,结合计算机视觉和自然语言处理技术,实现"看屏操作"的能力。 系统架构设计 #mermaid-svg-2gn2GRvh5WCP2ktF {font-family:"trebuchet ms",verdana,arial,sans-…...
golang循环变量捕获问题
在 Go 语言中,当在循环中启动协程(goroutine)时,如果在协程闭包中直接引用循环变量,可能会遇到一个常见的陷阱 - 循环变量捕获问题。让我详细解释一下: 问题背景 看这个代码片段: fo…...

Opencv中的addweighted函数
一.addweighted函数作用 addweighted()是OpenCV库中用于图像处理的函数,主要功能是将两个输入图像(尺寸和类型相同)按照指定的权重进行加权叠加(图像融合),并添加一个标量值&#x…...

Redis数据倾斜问题解决
Redis 数据倾斜问题解析与解决方案 什么是 Redis 数据倾斜 Redis 数据倾斜指的是在 Redis 集群中,部分节点存储的数据量或访问量远高于其他节点,导致这些节点负载过高,影响整体性能。 数据倾斜的主要表现 部分节点内存使用率远高于其他节…...

听写流程自动化实践,轻量级教育辅助
随着智能教育工具的发展,越来越多的传统学习方式正在被数字化、自动化所优化。听写作为语文、英语等学科中重要的基础训练形式,也迎来了更高效的解决方案。 这是一款轻量但功能强大的听写辅助工具。它是基于本地词库与可选在线语音引擎构建,…...

使用Spring AI和MCP协议构建图片搜索服务
目录 使用Spring AI和MCP协议构建图片搜索服务 引言 技术栈概览 项目架构设计 架构图 服务端开发 1. 创建Spring Boot项目 2. 实现图片搜索工具 3. 配置传输模式 Stdio模式(本地调用) SSE模式(远程调用) 4. 注册工具提…...

消息队列系统设计与实践全解析
文章目录 🚀 消息队列系统设计与实践全解析🔍 一、消息队列选型1.1 业务场景匹配矩阵1.2 吞吐量/延迟/可靠性权衡💡 权衡决策框架 1.3 运维复杂度评估🔧 运维成本降低策略 🏗️ 二、典型架构设计2.1 分布式事务最终一致…...

消防一体化安全管控平台:构建消防“一张图”和APP统一管理
在城市的某个角落,一场突如其来的火灾打破了平静。熊熊烈火迅速蔓延,滚滚浓烟弥漫开来,周围群众的生命财产安全受到严重威胁。就在这千钧一发之际,消防救援队伍迅速行动,而豪越科技消防一体化安全管控平台构建的消防“…...
【WebSocket】SpringBoot项目中使用WebSocket
1. 导入坐标 如果springboot父工程没有加入websocket的起步依赖,添加它的坐标的时候需要带上版本号。 <dependency><groupId>org.springframework.boot</groupId><artifactId>spring-boot-starter-websocket</artifactId> </dep…...