当前位置: 首页 > news >正文

Elasticsearch高级搜索技术-结构化数据搜索

目录

结构化数据的存储

示例映射

使用range查询

查询示例

运算符

更多示例

日期查询

示例


    结构化数据搜索是Elasticsearch另一个强大的功能,允许用户对具有明确类型的数据(如数字、日期和布尔值)进行精确的过滤和查询。这种类型的搜索通常涉及使用比较运算符来匹配特定条件。                

结构化数据的存储

当将结构化数据存储到Elasticsearch时,你需要定义一个映射(mapping),这个映射描述了每个字段的数据类型。例如,在电子商务网站的商品索引中,price字段可以被定义为floatinteger类型,这取决于价格是否包含小数点。

示例映射
PUT /products
{"mappings": {"properties": {"name": { "type": "text" },"description": { "type": "text" },"price": { "type": "float" },"available": { "type": "boolean" },"created_at": { "type": "date" }}}
}

使用range查询

range查询允许你根据数值范围来过滤文档。你可以指定一个或多个边界,并且可以设置这些边界的开闭性(即是否包括边界值)。这对于筛选出符合特定条件的记录非常有用,比如价格低于某个阈值的所有商品。

查询示例

假设我们想要找到所有价格低于100元的商品:

GET /products/_search
{"query": {"range": {"price": {"lt": 100  // 小于100}}}
}

在这个例子中:

  • lt (less than) 指定了价格必须小于100。
  • 如果你想包括等于的情况,可以使用lte (less than or equal to)。

运算符

除了ltlte之外,还有其他几个常用的运算符:

  • gt (greater than): 大于
  • gte (greater than or equal to): 大于或等于
  • from 和 to: 可以用来指定一个范围,其中from代表下限,to代表上限
更多示例

查找价格在50至200之间的商品:

GET /products/_search
{"query": {"range": {"price": {"gte": 50,  // 大于或等于50"lte": 200   // 小于或等于200}}}
}

日期查询

对于日期字段,range查询同样适用。你可以用日期字符串或者时间戳来进行比较。

示例

查找在过去一个月内创建的所有商品:

GET /products/_search
{"query": {"range": {"created_at": {"gte": "now-1M/M",  // 大于或等于上个月初"lt": "now/M"       // 小于本月月初}}}
}

这里的now-1M/M表示从当前时间减去一个月,并且取该月的第一天;now/M则表示当前月份的第一天。

 

相关文章:

Elasticsearch高级搜索技术-结构化数据搜索

目录 结构化数据的存储 示例映射 使用range查询 查询示例 运算符 更多示例 日期查询 示例 结构化数据搜索是Elasticsearch另一个强大的功能,允许用户对具有明确类型的数据(如数字、日期和布尔值)进行精确的过滤和查询。这种类型的搜索通常涉及…...

ffmpeg面向对象——类所属的方法探索

ffmpeg是面向对象的思想写的代码,自然符合oopc的实现套路。这个也是oopc的通用法则。 1.类所属方法oopc的实现形式 ffmpeg抽象出某一类,然后某一类的方法如何调用?你说这还不简单: 对象.对象方法() 或者 对象指针-&g…...

TensorRT-LLM七日谈 Day3

今天主要是结合理论进一步熟悉TensorRT-LLM的内容 从下面的分享可以看出,TensorRT-LLM是在TensorRT的基础上进行了进一步封装,提供拼batch,量化等推理加速实现方式。 下面的图片更好的展示了TensorRT-LLM的流程,包含权重转换&…...

如何使用Pandas库处理大型数据集?

如何使用Pandas库处理大型数据集? 处理大型数据集是数据分析中的一个挑战,尤其是在资源有限的情况下。Pandas是Python中非常流行的数据处理库,但它在处理非常大的数据集时可能会遇到内存限制的问题。因此,我们需要一些策略来提高Pandas处理大型数据集的效率。以下是使用Pa…...

XHR 创建对象

XHR 创建对象 XMLHttpRequest(XHR)是现代Web开发中不可或缺的技术之一。它允许Web开发者通过JavaScript发送网络请求,以在不重新加载整个页面的情况下更新网页的某部分。XHR为开发者提供了一种在客户端和服务器之间传输数据的有效方式,是AJAX(Asynchronous JavaScript an…...

# 在执行 rpm 卸载软件使用 nodeps 参数时,报错 error: package nodeps is not installed 分析

在执行 rpm 卸载软件使用 nodeps 参数时,报错 error: package nodeps is not installed 分析 一、问题描述: 在执行 rpm 卸载软件使用 nodeps 参数时,报错 error: package nodeps is not installed 如下图: 二、报错分析&…...

C++的类和动态内存分配(深拷贝与浅拷贝)并实现自己的string类

首先&#xff0c;我们先写一个并不完美的类&#xff1a; #include<iostream> #include<cstring> using namespace std;class Mystring{private:char *p;int len;static int num;friend ostream& operator<<(ostream& os, const Mystring& c);pu…...

通过观测云 DataKit Extension 接入 AWS Lambda 最佳实践

前言 AWS Lambda 是一项计算服务&#xff0c;使用时无需预配置或管理服务器即可运行代码。AWS Lambda 只在需要时执行代码并自动缩放。借助 AWS Lambda&#xff0c;几乎可以为任何类型的应用程序或后端服务运行代码&#xff0c;而且无需执行任何管理。 Lambda Layer 是一个包…...

MySQL-三范式 视图

文章目录 三范式三范式简介第一范式第二范式第三范式 表设计一对一一对多多对多最终的设计 视图 三范式 三范式简介 所谓三范式, 其实是表设计的三大原则, 目的都是为了节省空间, 但是三范式是必须要遵守的吗? 答案是否定的(但是第一范式必须遵守) 因为有时候严格遵守三范式…...

多线程(三):线程等待获取线程引用线程休眠线程状态

目录 1、等待一个线程&#xff1a;join 1.1 join() 1.2 join(long millis)——"超时时间" 1.3 join(long millis&#xff0c;int nanos) 2、获取当前线程的引用&#xff1a;currentThread 3、休眠当前进程&#xff1a;sleep 3.1 实际休眠时间 3.2 sleep的特殊…...

Hi3244 应用指导

Hi3244 是一款DIP8封装高性能、多模式工作的原边控制功率开关。Hi3244内高精度的恒流、恒压控制机制结合完备的保护功能&#xff0c;使其适用于小功率离线式电源应用中。在恒压输出模式中&#xff0c;Hi3244 采用多模式工作方式&#xff0c;即调幅控制&#xff08;AM&#xff0…...

【LeetCode热题100】哈希

1.两数之和 给定一个整数数组 nums 和一个整数目标值 target&#xff0c;请你在该数组中找出 和为目标值 target 的那 两个 整数&#xff0c;并返回它们的数组下标。 你可以假设每种输入只会对应一个答案&#xff0c;并且你不能使用两次相同的元素。 你可以按任意顺序返回答…...

Java的四种循环语句

背景&#xff1a; Java 中主要有四种循环语句&#xff1a;for 循环、while 循环、do-while 循环 和 foreach 循环&#xff08;也称为增强型 for 循环&#xff09;。下面我将分别介绍这四种循环语句&#xff0c;并给出相应的实例。 for循环&#xff1a; 1. for 循环for 循环是…...

Qt杂记目录

Qt 杂记目录 QMenu 1.menu转string Qt 窗口阴影边框...

项目开发--基于docker实现模型容器化服务

背景 1、docker-compose build 和 docker-compose up -d分别是什么作用&#xff1f; 2、如何进入新构建的容器当中 3、模型保存的方法区别 4、如何让docker容器启动的时候能使用cuda进行模型推理加速 5、如何实现容器的迭代 解决方案 问题1 docker-compose build 和 docker…...

C语言 | Leetcode C语言题解之第477题汉明距离总和

题目&#xff1a; 题解&#xff1a; int totalHammingDistance(int* nums, int numsSize) {int ans 0;for (int i 0; i < 30; i) {int c 0;for (int j 0; j < numsSize; j) {c (nums[j] >> i) & 1;}ans c * (numsSize - c);}return ans; }...

Bug剖析

Bug剖析 • 所有的Bug报告有以下的基本要求&#xff1a; • 标题。要简略。 • 指派。谁来处理这个问题。 • 重现步骤。问题再次出现的相关步骤。 • 优先级别。问题的紧迫性与重要性。 • 严重程度。问题所产生的后果。 • 解决方案。怎么解决问题。 其他很多方面对修复问题…...

HI3516DV500 相机部分架构初探

Hi3516DV500 是一颗面向视觉行业推出的高清智能 Soc。该芯片最高支持 2 路 sensor 输入&#xff0c;支持最高 5M30fps 的 ISP 图像处理能力&#xff0c;支持 2F WDR、多级降噪、六轴防 抖、多光谱融合等多种传统图像增强和处理算法&#xff0c;支持通过 AI 算法对输入图像进行实…...

训练yolo系列出现问题mAP, R, P等为零

1. 问题 40系列显卡训练yolo系列出现问题&#xff0c;loss正常&#xff0c;但mAP&#xff0c;R&#xff0c;P等为零。 环境&#xff1a;ultralytics版本为8.3.9&#xff0c;cuda11.8&#xff0c; torch2.4。 40系列显卡网上说可以使用cuda低于11.7的&#xff0c;自己测试了下…...

数字媒体技术基础:色度子采样(4:4:4、4:2:2 、4:2:0)

在数字视频处理中&#xff0c;色度子采样 Chroma Subsampling可以用于压缩视频文件的大小&#xff0c;同时在大多数情况下保持较高的视觉质量&#xff0c;它的原理基于人类视觉系统对亮度 Luminance比对色度 Chrominance更加敏感这一特点。 一、 采样格式的表示方法 色度子采样…...

深度学习在微纳光子学中的应用

深度学习在微纳光子学中的主要应用方向 深度学习与微纳光子学的结合主要集中在以下几个方向&#xff1a; 逆向设计 通过神经网络快速预测微纳结构的光学响应&#xff0c;替代传统耗时的数值模拟方法。例如设计超表面、光子晶体等结构。 特征提取与优化 从复杂的光学数据中自…...

Xshell远程连接Kali(默认 | 私钥)Note版

前言:xshell远程连接&#xff0c;私钥连接和常规默认连接 任务一 开启ssh服务 service ssh status //查看ssh服务状态 service ssh start //开启ssh服务 update-rc.d ssh enable //开启自启动ssh服务 任务二 修改配置文件 vi /etc/ssh/ssh_config //第一…...

mongodb源码分析session执行handleRequest命令find过程

mongo/transport/service_state_machine.cpp已经分析startSession创建ASIOSession过程&#xff0c;并且验证connection是否超过限制ASIOSession和connection是循环接受客户端命令&#xff0c;把数据流转换成Message&#xff0c;状态转变流程是&#xff1a;State::Created 》 St…...

理解 MCP 工作流:使用 Ollama 和 LangChain 构建本地 MCP 客户端

&#x1f31f; 什么是 MCP&#xff1f; 模型控制协议 (MCP) 是一种创新的协议&#xff0c;旨在无缝连接 AI 模型与应用程序。 MCP 是一个开源协议&#xff0c;它标准化了我们的 LLM 应用程序连接所需工具和数据源并与之协作的方式。 可以把它想象成你的 AI 模型 和想要使用它…...

STM32标准库-DMA直接存储器存取

文章目录 一、DMA1.1简介1.2存储器映像1.3DMA框图1.4DMA基本结构1.5DMA请求1.6数据宽度与对齐1.7数据转运DMA1.8ADC扫描模式DMA 二、数据转运DMA2.1接线图2.2代码2.3相关API 一、DMA 1.1简介 DMA&#xff08;Direct Memory Access&#xff09;直接存储器存取 DMA可以提供外设…...

多模态商品数据接口:融合图像、语音与文字的下一代商品详情体验

一、多模态商品数据接口的技术架构 &#xff08;一&#xff09;多模态数据融合引擎 跨模态语义对齐 通过Transformer架构实现图像、语音、文字的语义关联。例如&#xff0c;当用户上传一张“蓝色连衣裙”的图片时&#xff0c;接口可自动提取图像中的颜色&#xff08;RGB值&…...

高危文件识别的常用算法:原理、应用与企业场景

高危文件识别的常用算法&#xff1a;原理、应用与企业场景 高危文件识别旨在检测可能导致安全威胁的文件&#xff0c;如包含恶意代码、敏感数据或欺诈内容的文档&#xff0c;在企业协同办公环境中&#xff08;如Teams、Google Workspace&#xff09;尤为重要。结合大模型技术&…...

有限自动机到正规文法转换器v1.0

1 项目简介 这是一个功能强大的有限自动机&#xff08;Finite Automaton, FA&#xff09;到正规文法&#xff08;Regular Grammar&#xff09;转换器&#xff0c;它配备了一个直观且完整的图形用户界面&#xff0c;使用户能够轻松地进行操作和观察。该程序基于编译原理中的经典…...

Web中间件--tomcat学习

Web中间件–tomcat Java虚拟机详解 什么是JAVA虚拟机 Java虚拟机是一个抽象的计算机&#xff0c;它可以执行Java字节码。Java虚拟机是Java平台的一部分&#xff0c;Java平台由Java语言、Java API和Java虚拟机组成。Java虚拟机的主要作用是将Java字节码转换为机器代码&#x…...

零知开源——STM32F103RBT6驱动 ICM20948 九轴传感器及 vofa + 上位机可视化教程

STM32F1 本教程使用零知标准板&#xff08;STM32F103RBT6&#xff09;通过I2C驱动ICM20948九轴传感器&#xff0c;实现姿态解算&#xff0c;并通过串口将数据实时发送至VOFA上位机进行3D可视化。代码基于开源库修改优化&#xff0c;适合嵌入式及物联网开发者。在基础驱动上新增…...