Python知识点:基于Python工具,如何使用Scikit-Image进行图像处理与分析
开篇,先说一个好消息,截止到2025年1月1日前,翻到文末找到我,赠送定制版的开题报告和任务书,先到先得!过期不候!
基于Python的Scikit-Image图像处理与分析指南
在Python的科学计算生态系统中,Scikit-Image是一个功能强大的图像处理库。它建立在NumPy数组之上,提供了丰富的图像处理和分析工具,包括图像的I/O、变换、分割、形态学操作等。本文将详细介绍如何使用Scikit-Image进行图像处理与分析。
环境搭建
首先,确保你已经安装了Scikit-Image库。如果没有,你可以通过以下命令安装:
pip install scikit-image
读取和显示图像
在进行图像处理之前,我们需要读取图像数据。Scikit-Image提供了io模块来读取和保存图像。
from skimage import io
import matplotlib.pyplot as plt# 读取图像
image = io.imread('path_to_image.jpg')# 显示图像
plt.imshow(image)
plt.axis('off') # 不显示坐标轴
plt.show()
预处理
图像预处理是图像分析中的重要步骤,包括灰度化、滤波、缩放等。
灰度化
将彩色图像转换为灰度图像,可以使用color模块。
from skimage import color# 灰度化
gray_image = color.rgb2gray(image)
plt.imshow(gray_image, cmap='gray')
plt.axis('off')
plt.show()
滤波
滤波是用于去除图像噪声的常用技术。Scikit-Image提供了多种滤波器,如高斯滤波、中值滤波等。
from skimage import filters# 高斯滤波
smoothed_image = filters.gaussian(gray_image, sigma=2)
plt.imshow(smoothed_image, cmap='gray')
plt.axis('off')
plt.show()
边缘检测
边缘检测是图像分割和特征提取的重要步骤。Scikit-Image提供了feature模块来进行边缘检测。
from skimage import feature# Sobel边缘检测
edges = feature.sobel(gray_image)
plt.imshow(edges, cmap='gray')
plt.axis('off')
plt.show()
图像分割
图像分割是将图像划分为不同区域的过程。Scikit-Image提供了segmentation模块来进行图像分割。
from skimage import segmentation# 分水岭分割
markers = segmentation.slic(image, compactness=30, n_segments=400, start_label=1)
segmented_image = segmentation.relabel_sequential(markers)[0]
plt.imshow(segmented_image)
plt.axis('off')
plt.show()
形态学操作
形态学操作是图像处理中的一种基本工具,包括膨胀、腐蚀、开运算和闭运算等。
from skimage import morphology# 二值化
binary_image = gray_image > 0.5# 膨胀
dilated_image = morphology.dilation(binary_image, morphology.disk(5))# 腐蚀
eroded_image = morphology.erosion(binary_image, morphology.disk(5))# 开运算
opened_image = morphology.opening(binary_image, morphology.disk(5))# 闭运算
closed_image = morphology.closing(binary_image, morphology.disk(5))# 显示结果
fig, axes = plt.subplots(1, 5, figsize=(15, 3))
ax = axes.ravel()
ax[0].imshow(binary_image, cmap='gray')
ax[0].set_title('Original')
ax[1].imshow(dilated_image, cmap='gray')
ax[1].set_title('Dilated')
ax[2].imshow(eroded_image, cmap='gray')
ax[2].set_title('Eroded')
ax[3].imshow(opened_image, cmap='gray')
ax[3].set_title('Opened')
ax[4].imshow(closed_image, cmap='gray')
ax[4].set_title('Closed')
for a in ax:a.axis('off')
plt.show()
特征提取
Scikit-Image提供了多种特征提取工具,如角点检测、斑点检测等。
from skimage import feature# 角点检测
corners = feature.corner_peaks(feature.corner_harris(gray_image), min_distance=5)
plt.imshow(gray_image, cmap='gray')
plt.scatter(*corners.max(axis=1), marker='o', color='r', s=100)
plt.axis('off')
plt.show()
结论
Scikit-Image是一个功能丰富的图像处理库,它提供了从基础的图像I/O到复杂的图像分析和处理的多种工具。通过本文的介绍,你应该能够开始使用Scikit-Image进行基本的图像处理和分析任务。随着你对库的进一步探索,你将能够解决更复杂的图像处理问题。
最后,说一个好消息,如果你正苦于毕业设计,点击下面的卡片call我,赠送定制版的开题报告和任务书,先到先得!过期不候!
相关文章:
Python知识点:基于Python工具,如何使用Scikit-Image进行图像处理与分析
开篇,先说一个好消息,截止到2025年1月1日前,翻到文末找到我,赠送定制版的开题报告和任务书,先到先得!过期不候! 基于Python的Scikit-Image图像处理与分析指南 在Python的科学计算生态系统中&am…...
MongoDB初学者入门教学:与MySQL的对比理解
🏝️ 博主介绍 大家好,我是一个搬砖的农民工,很高兴认识大家 😊 ~ 👨🎓 个人介绍:本人是一名后端Java开发工程师,坐标北京 ~ 🎉 感谢关注 📖 一起学习 &…...
Oracle AI Vector Search
Oracle AI Vector Search 是 Oracle Database 23ai 中引入的一项新技术,它允许用户在数据库中直接存储和高效查询向量数据。这项技术旨在简化应用程序的开发,并且支持不同维度和格式的向量。以下是 Oracle AI Vector Search 的一些关键特性和优势&#x…...
基于SpringBoot的健身会员管理系统实战分享
在这个充满活力的时代,我们自豪地呈现一款专为健身爱好者和专业人士设计的会员管理系统——一个集创新、效率与便捷于一体的解决方案。我们的系统基于强大的RuoYi-Vue框架构建,采用最新的Spring Boot和Vue3技术,确保了系统的高性能和用户友好…...
Elasticsearch高级搜索技术-结构化数据搜索
目录 结构化数据的存储 示例映射 使用range查询 查询示例 运算符 更多示例 日期查询 示例 结构化数据搜索是Elasticsearch另一个强大的功能,允许用户对具有明确类型的数据(如数字、日期和布尔值)进行精确的过滤和查询。这种类型的搜索通常涉及…...
ffmpeg面向对象——类所属的方法探索
ffmpeg是面向对象的思想写的代码,自然符合oopc的实现套路。这个也是oopc的通用法则。 1.类所属方法oopc的实现形式 ffmpeg抽象出某一类,然后某一类的方法如何调用?你说这还不简单: 对象.对象方法() 或者 对象指针-&g…...
TensorRT-LLM七日谈 Day3
今天主要是结合理论进一步熟悉TensorRT-LLM的内容 从下面的分享可以看出,TensorRT-LLM是在TensorRT的基础上进行了进一步封装,提供拼batch,量化等推理加速实现方式。 下面的图片更好的展示了TensorRT-LLM的流程,包含权重转换&…...
如何使用Pandas库处理大型数据集?
如何使用Pandas库处理大型数据集? 处理大型数据集是数据分析中的一个挑战,尤其是在资源有限的情况下。Pandas是Python中非常流行的数据处理库,但它在处理非常大的数据集时可能会遇到内存限制的问题。因此,我们需要一些策略来提高Pandas处理大型数据集的效率。以下是使用Pa…...
XHR 创建对象
XHR 创建对象 XMLHttpRequest(XHR)是现代Web开发中不可或缺的技术之一。它允许Web开发者通过JavaScript发送网络请求,以在不重新加载整个页面的情况下更新网页的某部分。XHR为开发者提供了一种在客户端和服务器之间传输数据的有效方式,是AJAX(Asynchronous JavaScript an…...
# 在执行 rpm 卸载软件使用 nodeps 参数时,报错 error: package nodeps is not installed 分析
在执行 rpm 卸载软件使用 nodeps 参数时,报错 error: package nodeps is not installed 分析 一、问题描述: 在执行 rpm 卸载软件使用 nodeps 参数时,报错 error: package nodeps is not installed 如下图: 二、报错分析&…...
C++的类和动态内存分配(深拷贝与浅拷贝)并实现自己的string类
首先,我们先写一个并不完美的类: #include<iostream> #include<cstring> using namespace std;class Mystring{private:char *p;int len;static int num;friend ostream& operator<<(ostream& os, const Mystring& c);pu…...
通过观测云 DataKit Extension 接入 AWS Lambda 最佳实践
前言 AWS Lambda 是一项计算服务,使用时无需预配置或管理服务器即可运行代码。AWS Lambda 只在需要时执行代码并自动缩放。借助 AWS Lambda,几乎可以为任何类型的应用程序或后端服务运行代码,而且无需执行任何管理。 Lambda Layer 是一个包…...
MySQL-三范式 视图
文章目录 三范式三范式简介第一范式第二范式第三范式 表设计一对一一对多多对多最终的设计 视图 三范式 三范式简介 所谓三范式, 其实是表设计的三大原则, 目的都是为了节省空间, 但是三范式是必须要遵守的吗? 答案是否定的(但是第一范式必须遵守) 因为有时候严格遵守三范式…...
多线程(三):线程等待获取线程引用线程休眠线程状态
目录 1、等待一个线程:join 1.1 join() 1.2 join(long millis)——"超时时间" 1.3 join(long millis,int nanos) 2、获取当前线程的引用:currentThread 3、休眠当前进程:sleep 3.1 实际休眠时间 3.2 sleep的特殊…...
Hi3244 应用指导
Hi3244 是一款DIP8封装高性能、多模式工作的原边控制功率开关。Hi3244内高精度的恒流、恒压控制机制结合完备的保护功能,使其适用于小功率离线式电源应用中。在恒压输出模式中,Hi3244 采用多模式工作方式,即调幅控制(AM࿰…...
【LeetCode热题100】哈希
1.两数之和 给定一个整数数组 nums 和一个整数目标值 target,请你在该数组中找出 和为目标值 target 的那 两个 整数,并返回它们的数组下标。 你可以假设每种输入只会对应一个答案,并且你不能使用两次相同的元素。 你可以按任意顺序返回答…...
Java的四种循环语句
背景: Java 中主要有四种循环语句:for 循环、while 循环、do-while 循环 和 foreach 循环(也称为增强型 for 循环)。下面我将分别介绍这四种循环语句,并给出相应的实例。 for循环: 1. for 循环for 循环是…...
Qt杂记目录
Qt 杂记目录 QMenu 1.menu转string Qt 窗口阴影边框...
项目开发--基于docker实现模型容器化服务
背景 1、docker-compose build 和 docker-compose up -d分别是什么作用? 2、如何进入新构建的容器当中 3、模型保存的方法区别 4、如何让docker容器启动的时候能使用cuda进行模型推理加速 5、如何实现容器的迭代 解决方案 问题1 docker-compose build 和 docker…...
C语言 | Leetcode C语言题解之第477题汉明距离总和
题目: 题解: int totalHammingDistance(int* nums, int numsSize) {int ans 0;for (int i 0; i < 30; i) {int c 0;for (int j 0; j < numsSize; j) {c (nums[j] >> i) & 1;}ans c * (numsSize - c);}return ans; }...
日语AI面试高效通关秘籍:专业解读与青柚面试智能助攻
在如今就业市场竞争日益激烈的背景下,越来越多的求职者将目光投向了日本及中日双语岗位。但是,一场日语面试往往让许多人感到步履维艰。你是否也曾因为面试官抛出的“刁钻问题”而心生畏惧?面对生疏的日语交流环境,即便提前恶补了…...
python打卡day49
知识点回顾: 通道注意力模块复习空间注意力模块CBAM的定义 作业:尝试对今天的模型检查参数数目,并用tensorboard查看训练过程 import torch import torch.nn as nn# 定义通道注意力 class ChannelAttention(nn.Module):def __init__(self,…...
【力扣数据库知识手册笔记】索引
索引 索引的优缺点 优点1. 通过创建唯一性索引,可以保证数据库表中每一行数据的唯一性。2. 可以加快数据的检索速度(创建索引的主要原因)。3. 可以加速表和表之间的连接,实现数据的参考完整性。4. 可以在查询过程中,…...
FFmpeg 低延迟同屏方案
引言 在实时互动需求激增的当下,无论是在线教育中的师生同屏演示、远程办公的屏幕共享协作,还是游戏直播的画面实时传输,低延迟同屏已成为保障用户体验的核心指标。FFmpeg 作为一款功能强大的多媒体框架,凭借其灵活的编解码、数据…...
解锁数据库简洁之道:FastAPI与SQLModel实战指南
在构建现代Web应用程序时,与数据库的交互无疑是核心环节。虽然传统的数据库操作方式(如直接编写SQL语句与psycopg2交互)赋予了我们精细的控制权,但在面对日益复杂的业务逻辑和快速迭代的需求时,这种方式的开发效率和可…...
转转集团旗下首家二手多品类循环仓店“超级转转”开业
6月9日,国内领先的循环经济企业转转集团旗下首家二手多品类循环仓店“超级转转”正式开业。 转转集团创始人兼CEO黄炜、转转循环时尚发起人朱珠、转转集团COO兼红布林CEO胡伟琨、王府井集团副总裁祝捷等出席了开业剪彩仪式。 据「TMT星球」了解,“超级…...
【C语言练习】080. 使用C语言实现简单的数据库操作
080. 使用C语言实现简单的数据库操作 080. 使用C语言实现简单的数据库操作使用原生APIODBC接口第三方库ORM框架文件模拟1. 安装SQLite2. 示例代码:使用SQLite创建数据库、表和插入数据3. 编译和运行4. 示例运行输出:5. 注意事项6. 总结080. 使用C语言实现简单的数据库操作 在…...
【HTTP三个基础问题】
面试官您好!HTTP是超文本传输协议,是互联网上客户端和服务器之间传输超文本数据(比如文字、图片、音频、视频等)的核心协议,当前互联网应用最广泛的版本是HTTP1.1,它基于经典的C/S模型,也就是客…...
在QWebEngineView上实现鼠标、触摸等事件捕获的解决方案
这个问题我看其他博主也写了,要么要会员、要么写的乱七八糟。这里我整理一下,把问题说清楚并且给出代码,拿去用就行,照着葫芦画瓢。 问题 在继承QWebEngineView后,重写mousePressEvent或event函数无法捕获鼠标按下事…...
C#学习第29天:表达式树(Expression Trees)
目录 什么是表达式树? 核心概念 1.表达式树的构建 2. 表达式树与Lambda表达式 3.解析和访问表达式树 4.动态条件查询 表达式树的优势 1.动态构建查询 2.LINQ 提供程序支持: 3.性能优化 4.元数据处理 5.代码转换和重写 适用场景 代码复杂性…...
