MySQL Server、HeidiSQL(MySQL 数据库工具)
目录
一、MySQL Server
(一)官网下载
(二)安装与配置
二、HeidiSQL软件
(一)安装
1. 官网下载
2. 打开
3. 使用
(1)打开服务
(2)新增数据库
(3)自定义数据库名
(4)使用数据库(切换数据库)
(5)新增表
① 利用软件,新增表
② 直接执行SQL语句,创建表
(5)添加表内容
① 利用软件
② 执行SQL插入语句
一、MySQL Server
(一)官网下载
网址:https://downloads.mysql.com/archives/community/
选择MySQL Community Server 5.0.77 版本,msi文件,文件名是mysql-essential-5.0.77-winx64.msi
(二)安装与配置
双击exe档 > 保留默认设定,next > 选择Custom,next > 自定义安装位置,next > 保留默认设定,next > 点击Install > 一路保留默认设定,next > 默认勾选配置数据库,点击finish。
然后会自动弹出下一步的配置界面,如果没有自动弹出,则在Windows向导中找到“MySQL Server Instance Config Wizard”,点击打开它。
打开界面后,一路保留默认设定,next > 到配置端口号时,保留默认设定3306(若3306已被占用,再自定义其他端口号) > 到设置字符集时,选择“Manual Selected Default Character Set Collection”,并选择Character Set 为 utf8 > 服务名默认选择MySQL(若服务名已存在,则自定义服务名)> 输入新密码和确认密码(设置一个简单密码:root) > next > Excute。
安装成功后,会出现下图界面,点击finish,完成配置。配置成功界面:
二、HeidiSQL软件
(一)安装
1. 官网下载
网址:https://www.heidisql.com/download.php
2. 打开
解压,双击heidisql.exe,即可打开使用。
3. 使用
(1)打开服务
打开时,点击新增,如下图,保留默认内容,输入密码,点击开启。
(2)新增数据库
(3)自定义数据库名
保留默认排序规则,点击确定。
(4)使用数据库(切换数据库)
点击数据库,或者执行语句“use 数据库名; ”
(5)新增表
给表和各个字段一般要写好注释。
① 利用软件,新增表
② 直接执行SQL语句,创建表
执行的SQL语句内容如下:
create database test_db1 character set utf8 collate utf8_general_ci; -- 创建数据库use test_tb1; -- 进入数据库create table user ( -- 创建表id int primary key auto_increment,name varchar(40),password varchar(40),email varchar(60),birthday date
) character set utf8 collate utf8_general_ci;
(5)添加表内容
① 利用软件
点击“加入”按钮,编辑栏位。

② 执行SQL插入语句
insert into user(name,password,email,birthday) values('zs','123456','zs@sina.com','1980-12-04');
insert into user(name,password,email,birthday) values('lisi','123456','lisi@sina.com','1981-12-04');
insert into user(name,password,email,birthday) values('wangwu','123456','wangwu@sina.com','1979-12-04');
相关文章:

MySQL Server、HeidiSQL(MySQL 数据库工具)
目录 一、MySQL Server (一)官网下载 (二)安装与配置 二、HeidiSQL软件 (一)安装 1. 官网下载 2. 打开 3. 使用 (1)打开服务 (2)新增数据库 ÿ…...
矩阵相关算法
矩阵旋转90度 给定一个 n n 的二维矩阵 matrix 表示一个图像,请你将图像顺时针旋转 90 度。 #include <iostream> #include <vector>using namespace std;void rotate(vector<vector<int>>& matrix) {int n matrix.size();// 第一步…...
微信小程序-封装通用模块
文章目录 微信小程序-封装通用模块封装toast和modal封装storage封装网络请求 微信小程序-封装通用模块 封装toast和modal /** 提示消息框 */ function toast({title "数据加载中",icon "none",duration 2000,mask true, }) {wx.showToast({title,ico…...

Modnet 人像抠图(论文复现)
Modnet 人像抠图(论文复现) 本文所涉及所有资源均在传知代码平台可获取 文章目录 Modnet 人像抠图(论文复现)论文概述论文方法复现WebUI部署 论文概述 人像抠图(Portrait matting)旨在预测一个精确的 alpha 抠图,可以用…...

利用session机制造测试账号,无需前端也可以测试后端接口
适用场景:我们在测试的时候经常会遇到前端还没有开发完毕,后端已经结束开发了,但是后端的有些接口是需要特定的账号身份调用才会生效,此时因为前端未开发完毕,所以我们不能通过web页面进行登录,那么如何解决…...
JAVA_18
JAVA_18 1.IO流2.JAVA_IO流3.标准输入输出4.对象序列化5.字符编码与字符集6.异常处理和资源关闭 1.IO流 IO流(Input/Output stream)是用于在程序和外部设备(如文件、网络等)之间进行数据传输的机制。它是Java中处理输入和输出操作的一种抽象方式。概念: 输入流(Input Stream):…...

Linux升级openssl版本
Linux升级openssl版本 服务器编译依赖库检查 $ yum -y install gcc gcc-c make libtool zlib zlib-devel版本检测 $ openssl version OpenSSL 1.0.1e-fips 11 Feb 2013 $ ssh -V OpenSSH_6.6.1p1, OpenSSL 1.0.1e-fips 11 Feb 2013下载openssl 地址:https://www.o…...

多态对象的存储方案小结
某个类型有几种不同的子类,Jackson中的JsonTypeInfo 和JsonSubTypes可以应对这种情形,但有点麻烦,并且name属性必须是字符串、必须用Jackson为基础的json工具类对json字符串和对象进行序列化和反序列化。用过一次这种方案后边就不想再用了。 …...
Linux 之 nano 编辑器
使用git提交的时候,发生冲突或要记录相关信息时会弹出nano这个编辑器。 nano [选项] [[行,列] 文件名]... nano[必要参数][选择参数][文件] 命令行白的部分是组合键,后面的则是该组合键的功能。指数符号(^)代表的是键盘的[ctrl]按键,(M)表示…...
zipkin启动脚本并指定mysql数据存储
#!/bin/bash# 配置部分 ############################################################## Zipkin JAR 文件的名称 # 这里指定了 Zipkin 的可执行 JAR 文件,确保该文件在当前目录中可用。 ZIPKIN_JAR"zipkin-server-2.23.2-exec.jar"# PID 文件的位置 # 该…...

超越GPT-4的视觉与文本理解能力,开源多模态模型领跑者 - Molmo
Molmo是由艾伦人工智能研究所(Ai2)发布的一系列多模态人工智能模型,旨在提高开放系统在性能上与专有系统(如商业模型)之间的竞争力。以下是对Molmo的详细总结: Molmo是什么: Molmo是基于Qwen2和…...
输入输出--I/O流【C++提升】()
1.1基础知识: 在C中,输入输出(IO)流是通过标准库中的 <iostream> 头文件来处理的。C 提供了几种基本的输入输出流类,最常用的有以下几种: std::cin:用于输入。std::cout:用于…...
Maven 中央仓库地址推荐
目录 Maven 中央仓库地址推荐 Maven Maven 中央仓库概述 什么是 Maven 中央仓库? 中央仓库的作用 常用的 Maven 中央仓库地址 官方 Maven 中央仓库 阿里云 Maven 中央仓库镜像 腾讯云 Maven 中央仓库镜像 网易 Maven 中央仓库镜像 华为云 Maven 中央仓库…...

Fastgpt本地化部署 - 以MAC为例
1.认识fastgpt 2.私有化部署 MongoDB:用于存储除了向量外的各类数据PostgreSQL/Milvus:存储向量数据OneAPI: 聚合各类 AI API,支持多模型调用 (任何模型问题,先自行通过 OneAPI 测试校验) (1&a…...

SpringBoot框架下购物推荐网站的设计模式与实现
3系统分析 3.1可行性分析 通过对本东大每日推购物推荐网站实行的目的初步调查和分析,提出可行性方案并对其一一进行论证。我们在这里主要从技术可行性、经济可行性、操作可行性等方面进行分析。 3.1.1技术可行性 本东大每日推购物推荐网站采用JAVA作为开发语言&…...
Apache Flink 和 Apache Kafka
Apache Flink 和 Apache Kafka 都是大数据生态系统中非常重要的工具,但它们的作用和应用场景有所不同。下面将分别介绍两者的主要特性和它们之间的异同点。 Apache Kafka 作用: 消息队列:Kafka 主要作为消息队列使用,用于解耦生…...

Excel中Ctrl+e的用法
重点:想要使用ctrle,前提是整合或拆分后的结果放置的单元格必须和被提取信息的单元格相邻,且被提取信息的单元格也必须相连。 下图为错误示例 这样则可以使用ctrle 1、信息整合 2、提取信息 3、添加符号 4、信息顺序调换 5、数字提取 crtle还…...
07-Cesium动态处理线条闪烁材质的属性
这段代码定义了 LineFlickerMaterialProperty 类,用于管理线条闪烁材质的属性。构造函数接收颜色和速度作为选项,类包含动态属性 isConstant 和 definitionChanged,以及获取材质类型和当前属性值的方法。getValue 方法返回颜色和速度的当前值,equals 方法用于比较两个实例是…...
postgresql16分区表解析
PostgreSQL 16 引入了对分区表的多项改进,增强了其性能和可用性。本文介绍PostgreSQL 16 中分区表功能,包括基本概念、创建方法、管理技巧以及一些最佳实践。 分区表的基本概念 分区表是一种将大表物理分割成更小、更易管理的部分的技术。每个部分称为…...
文字识别解决方案-OCR识别应用场景解析
光学字符识别(Optical Character Recognition, OCR)技术是一种将图像中的文字转换为可编辑和可搜索的数据的技术。随着人工智能和机器学习的发展,OCR技术的应用场景越来越广泛,为文字录入场景带来了革命性的变革,下面以…...

基于FPGA的PID算法学习———实现PID比例控制算法
基于FPGA的PID算法学习 前言一、PID算法分析二、PID仿真分析1. PID代码2.PI代码3.P代码4.顶层5.测试文件6.仿真波形 总结 前言 学习内容:参考网站: PID算法控制 PID即:Proportional(比例)、Integral(积分&…...

通过Wrangler CLI在worker中创建数据库和表
官方使用文档:Getting started Cloudflare D1 docs 创建数据库 在命令行中执行完成之后,会在本地和远程创建数据库: npx wranglerlatest d1 create prod-d1-tutorial 在cf中就可以看到数据库: 现在,您的Cloudfla…...

循环冗余码校验CRC码 算法步骤+详细实例计算
通信过程:(白话解释) 我们将原始待发送的消息称为 M M M,依据发送接收消息双方约定的生成多项式 G ( x ) G(x) G(x)(意思就是 G ( x ) G(x) G(x) 是已知的)࿰…...
1688商品列表API与其他数据源的对接思路
将1688商品列表API与其他数据源对接时,需结合业务场景设计数据流转链路,重点关注数据格式兼容性、接口调用频率控制及数据一致性维护。以下是具体对接思路及关键技术点: 一、核心对接场景与目标 商品数据同步 场景:将1688商品信息…...
macOS多出来了:Google云端硬盘、YouTube、表格、幻灯片、Gmail、Google文档等应用
文章目录 问题现象问题原因解决办法 问题现象 macOS启动台(Launchpad)多出来了:Google云端硬盘、YouTube、表格、幻灯片、Gmail、Google文档等应用。 问题原因 很明显,都是Google家的办公全家桶。这些应用并不是通过独立安装的…...

Cinnamon修改面板小工具图标
Cinnamon开始菜单-CSDN博客 设置模块都是做好的,比GNOME简单得多! 在 applet.js 里增加 const Settings imports.ui.settings;this.settings new Settings.AppletSettings(this, HTYMenusonichy, instance_id); this.settings.bind(menu-icon, menu…...
【论文笔记】若干矿井粉尘检测算法概述
总的来说,传统机器学习、传统机器学习与深度学习的结合、LSTM等算法所需要的数据集来源于矿井传感器测量的粉尘浓度,通过建立回归模型来预测未来矿井的粉尘浓度。传统机器学习算法性能易受数据中极端值的影响。YOLO等计算机视觉算法所需要的数据集来源于…...

【2025年】解决Burpsuite抓不到https包的问题
环境:windows11 burpsuite:2025.5 在抓取https网站时,burpsuite抓取不到https数据包,只显示: 解决该问题只需如下三个步骤: 1、浏览器中访问 http://burp 2、下载 CA certificate 证书 3、在设置--隐私与安全--…...
Axios请求超时重发机制
Axios 超时重新请求实现方案 在 Axios 中实现超时重新请求可以通过以下几种方式: 1. 使用拦截器实现自动重试 import axios from axios;// 创建axios实例 const instance axios.create();// 设置超时时间 instance.defaults.timeout 5000;// 最大重试次数 cons…...

《基于Apache Flink的流处理》笔记
思维导图 1-3 章 4-7章 8-11 章 参考资料 源码: https://github.com/streaming-with-flink 博客 https://flink.apache.org/bloghttps://www.ververica.com/blog 聚会及会议 https://flink-forward.orghttps://www.meetup.com/topics/apache-flink https://n…...