当前位置: 首页 > news >正文

时间序列预测(七)——梯度消失(Vanishing Gradient)与梯度爆炸(Exploding Gradient)

目录

一、定义

二、产生原因

三、解决方法:


梯度消失与梯度爆炸是深度学习中常见的训练问题,它们主要发生在神经网络的反向传播过程中,使得模型难以有效学习。

一、定义

1、梯度消失(Vanishing Gradient):指的是在反向传播时,随着层数增加,梯度逐渐衰减到接近零的现象。梯度消失的主要问题在于模型的前几层权重几乎无法得到有效更新,使得训练过程收敛非常缓慢,尤其在处理长序列或深层网络时表现得尤为明显。

2、梯度爆炸(Exploding Gradient):指在反向传播时,随着层数增加,梯度成指数级增长的现象。这种现象会导致权重值迅速变得非常大,从而影响模型稳定性,甚至出现数值溢出,使得网络无法收敛。

二、产生原因

1、梯度消失

  • 隐藏层层数过多。
  • 采用了不合适的激活函数,如sigmoid或tanh,它们的导数在大部分区间内都小于1,容易导致梯度消失。

2、梯度爆炸

  • 隐藏层层数过多。
  • 权重的初始化值过大。
  • 激活函数的导数值在某些区间内过大。

三、解决方法

1、梯度消失

  • 选择合适的激活函数:ReLU、Leaky ReLU 等激活函数可以缓解梯度消失问题,因为它们在正区间没有梯度衰减。可以看这篇文章:时间序列预测(三)——激活函数(Activation Function)-CSDN博客
  • 梯度裁剪(Gradient Clipping):设定一个最小梯度阈值,以防止梯度过度缩小。
  • 使用 LSTM 或 GRU:通过引入门控机制,LSTM 和 GRU 能够有效缓解梯度消失问题,使模型更稳定。
  • 权重初始化:使用如 Xavier 初始化、He 初始化等可以让初始权重更适合反向传播。

2、梯度爆炸

  • 梯度裁剪:设定一个最大梯度阈值,对超过该阈值的梯度进行截断,限制梯度更新的幅度。
  • 权重正则化:通过权重惩罚(如 L2 正则化)限制权重值过大,从而防止梯度爆炸。
  • 批归一化(Batch Normalization):在每层激活后对输入数据进行归一化,控制数值范围,避免梯度爆炸。

 别忘了给这篇文章点个赞哦,非常感谢。我也正处于学习的过程,如果有问题,欢迎在评论区留言讨论,一起学习!

相关文章:

时间序列预测(七)——梯度消失(Vanishing Gradient)与梯度爆炸(Exploding Gradient)

目录 一、定义 二、产生原因 三、解决方法: 梯度消失与梯度爆炸是深度学习中常见的训练问题,它们主要发生在神经网络的反向传播过程中,使得模型难以有效学习。 一、定义 1、梯度消失(Vanishing Gradient)&#xf…...

ARM assembly 12: GCD(最大公约数)计算

首先,我们看看GCD(Greatest Common Divisor)的CPP实现 int gcd(int a, int b) {if(b 0) return a;return gcd(b, a%b); }基于下面的gcd.s文件,我们尝试实现gcd函数 //gcd.s .global main .extern fopen, fprintf, fclose, printf, atoi.section .dat…...

「实战应用」如何用图表控件LightningChart可视化天气数据?(一)

LightningChart.NET完全由GPU加速,并且性能经过优化,可用于实时显示海量数据-超过10亿个数据点。 LightningChart包括广泛的2D,高级3D,Polar,Smith,3D饼/甜甜圈,地理地图和GIS图表以及适用于科学…...

基于深度学习的细粒度图像分析综述【翻译】

🥇 版权: 本文由【墨理学AI】原创首发、各位读者大大、敬请查阅、感谢三连 🎉 声明: 作为全网 AI 领域 干货最多的博主之一,❤️ 不负光阴不负卿 ❤️ 文章目录 基础信息0 摘要1 INTRODUCTION2 识别与检索 RECOGNITION VS. RETRIEVAL3 问题和…...

yolo笔记

目录 Anaconda安装Pytorchyolov5下载部署labelimg安装 Anaconda安装 官网链接 https://www.anaconda.com/ 官网链接链接: 官网链接https://www.anaconda.com/ 直接下最新版 (网站会自动检测系统,我是在Windows环境截图的) bash Anaconda3-XXXX-Linux-x86_64.sh一…...

Android平台RTSP|RTMP播放器PK:VLC for Android还是SmartPlayer?

好多开发者,希望在Android端低延迟的播放RTMP或RTSP流,本文就目前市面上主流2个直播播放框架,做个简单的对比。 VLC for Android VLC for Android 是一款功能强大的多媒体播放器,具有以下特点和功能: 广泛的格式支持…...

IDEA下面的Services不见了(解决方案)

大家使用IDEA有时候新打开个项目这个东西不会自动出现如何解决 配置方法: 右上角打开进入Edit Configurations 进入后我们看到里面是没有SpringBoot相关内容的 点击加号选择SpringBoot 然后Apply Ok即可,现在IDEA下面就会出现Service了,打…...

【pyspark学习从入门到精通7】DataFrames_2

目录 创建 DataFrames 生成我们自己的 JSON 数据 创建 DataFrame 创建临时表 简单的 DataFrame 查询 DataFrame API 查询 SQL 查询 创建 DataFrames 通常,您会通过使用 SparkSession(或在 PySpark shell 中调用 spark)导入数据来创建 …...

Server-Sent Event(SSE) GPT场景实现

关于SSE的基本概念可以看一下阮一峰老师的这篇文章:Server-Sent Events教程。 现在比较常见的场景是gpt回答的时候类似下图这种打字机的情况,因为AI一般响应时间会比较长,使用这种方式能让人别等那么久,是一个相对比较良好的用户…...

美国Honeywell霍尼韦尔气体分析侦测器传感器MIDAS-K-HCL说明书

上海德奥达 ---Honeywell霍尼韦尔气体分析侦测器传感器MIDAS-K-HCL是一款用于检测氯化氢气体的高性能传感器。以下是该传感器的技术参数和描述:技术参数:-测量范围:0-50ppm-灵敏度:0.5ppm-响应时间:≤30秒-电源&…...

L1练习-鸢尾花数据集处理(分类/聚类)

背景 前文(《AI 自学 Lesson1 - Sklearn(开源Python机器学习包)》)以鸢尾花数据集的处理为例,本文将完善其代码,在使用 sklearn 的部分工具包基础上,增加部分数据预处理、数据分析和数据可视化…...

javaweb以html方式集成富文本编辑器TinyMce

前言: 单一的批量图片上传按钮,禁用tinymce编辑器,但是还可以操作图片编辑; 多元化格式的富文本编辑要求; 采用tinymce实现。 附: tinymce中文手册网站: http://tinymce.ax-z.cn/download-all.…...

大学生福音!用GPT-4o几分钟内轻松读懂一篇论文!

文章目录 一、读论文智能体:PDFAI操作指导阅读论文上传论文并分析进一步研究导出可用代码 二、感受 一、读论文智能体:PDFAI 操作指导 ChatGPT 4o国内直接访问地址:https://share.xuzhugpt.cloud/ 上plus的车 输入购买的授权码即可。 默认…...

微信小程序昵称获取

<view class"shouquan_list"> <label>昵称</label> <input type"nickname" value"{{nichengshoudong}}" bindinput"bindKeyInputnicheng" placeholder"请输入昵称" placeholder-style"color:r…...

SQL进阶技巧:如何找出开会时间有重叠的会议室?| 时间区间重叠问题

目录 0 场景描述 1 数据准备 2 问题分析 方法1&#xff1a;利用 lateral view posexplode()函数将表展开成时间明细表 方法2&#xff1a;利用数学区间讨论思想求解 3 小结 如果觉得本文对你有帮助&#xff0c;想进一步学习SQL语言这门艺术的&#xff0c;那么不妨也可以选…...

Educational Codeforces Round 170 (Rated for Div. 2) D 题解

to sum of:前三题都是究极水题&#xff0c;补补D题吧&#xff0c;dp太钛肽弱了.. Problem - D - Codeforces--Attribute Checks 思路:首先得坚定地确定m^2,然后剩下的复杂度思考怎么优化.. key:每一个0只考虑影响到下一个0之间的数字!! 定义dp[i][j]为,在有i个能力点时.点了…...

NeRS: Neural Reflectance Surfaces for Sparse-view 3D Reconstruction in the Wild

阅读记录&#xff1a; 1. 2.优点1&#xff1a;我们的方法仅依赖于近似的相机位姿估计和粗略的类别级形状模板。 3.我们的关键见解是&#xff0c;我们可以强制执行基于表面的 3D 表示&#xff0c;而不是允许广泛用于体积表示的无约束密度。重要的是&#xff0c;这允许依赖于视…...

【Linux】su 命令的运行原理以及su切换用户默认继承环境配置

一、su 命令的运行原理 原理解释&#xff1a; su&#xff08;switch user&#xff09;命令用于在Linux和Unix系统中切换用户身份。 当你执行 su 命令时&#xff0c;系统会创建一个新的进程&#xff0c;通常是一个新的 shell 实例。这个新进程会以目标用户的身份运行&#…...

libtorch环境配置

环境配置 建议在linux上配置对应环境 可以在autoDL上租一个服务器来搭建&#xff0c;带有pytorch的环境 https://www.autodl.com/home 我自己的win电脑上安装了pytorch&#xff0c;但是配置时会报错&#xff0c;于是到ubuntu上配置 电脑上装有pytorch的就不需要再下载libtorc…...

【C语言】define宏定义与const修饰限定

两者都是将字符替换为相应的数值。 区别在于&#xff1a; #define宏定义纸进行字符串替换&#xff0c;无类型检查 const修饰符限定变量为只读变量 #include <stdio.h> #define PI 3.14159 //符号常量 /* 功能&#xff1a;宏定义与const修饰符限定 时间&#xff1a;20…...

接口测试中缓存处理策略

在接口测试中&#xff0c;缓存处理策略是一个关键环节&#xff0c;直接影响测试结果的准确性和可靠性。合理的缓存处理策略能够确保测试环境的一致性&#xff0c;避免因缓存数据导致的测试偏差。以下是接口测试中常见的缓存处理策略及其详细说明&#xff1a; 一、缓存处理的核…...

Java 语言特性(面试系列1)

一、面向对象编程 1. 封装&#xff08;Encapsulation&#xff09; 定义&#xff1a;将数据&#xff08;属性&#xff09;和操作数据的方法绑定在一起&#xff0c;通过访问控制符&#xff08;private、protected、public&#xff09;隐藏内部实现细节。示例&#xff1a; public …...

中南大学无人机智能体的全面评估!BEDI:用于评估无人机上具身智能体的综合性基准测试

作者&#xff1a;Mingning Guo, Mengwei Wu, Jiarun He, Shaoxian Li, Haifeng Li, Chao Tao单位&#xff1a;中南大学地球科学与信息物理学院论文标题&#xff1a;BEDI: A Comprehensive Benchmark for Evaluating Embodied Agents on UAVs论文链接&#xff1a;https://arxiv.…...

跨链模式:多链互操作架构与性能扩展方案

跨链模式&#xff1a;多链互操作架构与性能扩展方案 ——构建下一代区块链互联网的技术基石 一、跨链架构的核心范式演进 1. 分层协议栈&#xff1a;模块化解耦设计 现代跨链系统采用分层协议栈实现灵活扩展&#xff08;H2Cross架构&#xff09;&#xff1a; 适配层&#xf…...

C# 求圆面积的程序(Program to find area of a circle)

给定半径r&#xff0c;求圆的面积。圆的面积应精确到小数点后5位。 例子&#xff1a; 输入&#xff1a;r 5 输出&#xff1a;78.53982 解释&#xff1a;由于面积 PI * r * r 3.14159265358979323846 * 5 * 5 78.53982&#xff0c;因为我们只保留小数点后 5 位数字。 输…...

NXP S32K146 T-Box 携手 SD NAND(贴片式TF卡):驱动汽车智能革新的黄金组合

在汽车智能化的汹涌浪潮中&#xff0c;车辆不再仅仅是传统的交通工具&#xff0c;而是逐步演变为高度智能的移动终端。这一转变的核心支撑&#xff0c;来自于车内关键技术的深度融合与协同创新。车载远程信息处理盒&#xff08;T-Box&#xff09;方案&#xff1a;NXP S32K146 与…...

【 java 虚拟机知识 第一篇 】

目录 1.内存模型 1.1.JVM内存模型的介绍 1.2.堆和栈的区别 1.3.栈的存储细节 1.4.堆的部分 1.5.程序计数器的作用 1.6.方法区的内容 1.7.字符串池 1.8.引用类型 1.9.内存泄漏与内存溢出 1.10.会出现内存溢出的结构 1.内存模型 1.1.JVM内存模型的介绍 内存模型主要分…...

【Linux】自动化构建-Make/Makefile

前言 上文我们讲到了Linux中的编译器gcc/g 【Linux】编译器gcc/g及其库的详细介绍-CSDN博客 本来我们将一个对于编译来说很重要的工具&#xff1a;make/makfile 1.背景 在一个工程中源文件不计其数&#xff0c;其按类型、功能、模块分别放在若干个目录中&#xff0c;mak…...

如何应对敏捷转型中的团队阻力

应对敏捷转型中的团队阻力需要明确沟通敏捷转型目的、提升团队参与感、提供充分的培训与支持、逐步推进敏捷实践、建立清晰的奖励和反馈机制。其中&#xff0c;明确沟通敏捷转型目的尤为关键&#xff0c;团队成员只有清晰理解转型背后的原因和利益&#xff0c;才能降低对变化的…...

学习一下用鸿蒙​​DevEco Studio HarmonyOS5实现百度地图

在鸿蒙&#xff08;HarmonyOS5&#xff09;中集成百度地图&#xff0c;可以通过以下步骤和技术方案实现。结合鸿蒙的分布式能力和百度地图的API&#xff0c;可以构建跨设备的定位、导航和地图展示功能。 ​​1. 鸿蒙环境准备​​ ​​开发工具​​&#xff1a;下载安装 ​​De…...