时间序列预测(七)——梯度消失(Vanishing Gradient)与梯度爆炸(Exploding Gradient)
目录
一、定义
二、产生原因
三、解决方法:
梯度消失与梯度爆炸是深度学习中常见的训练问题,它们主要发生在神经网络的反向传播过程中,使得模型难以有效学习。
一、定义
1、梯度消失(Vanishing Gradient):指的是在反向传播时,随着层数增加,梯度逐渐衰减到接近零的现象。梯度消失的主要问题在于模型的前几层权重几乎无法得到有效更新,使得训练过程收敛非常缓慢,尤其在处理长序列或深层网络时表现得尤为明显。
2、梯度爆炸(Exploding Gradient):指在反向传播时,随着层数增加,梯度成指数级增长的现象。这种现象会导致权重值迅速变得非常大,从而影响模型稳定性,甚至出现数值溢出,使得网络无法收敛。
二、产生原因
1、梯度消失:
- 隐藏层层数过多。
- 采用了不合适的激活函数,如sigmoid或tanh,它们的导数在大部分区间内都小于1,容易导致梯度消失。
2、梯度爆炸:
- 隐藏层层数过多。
- 权重的初始化值过大。
- 激活函数的导数值在某些区间内过大。
三、解决方法:
1、梯度消失:
- 选择合适的激活函数:ReLU、Leaky ReLU 等激活函数可以缓解梯度消失问题,因为它们在正区间没有梯度衰减。可以看这篇文章:时间序列预测(三)——激活函数(Activation Function)-CSDN博客
- 梯度裁剪(Gradient Clipping):设定一个最小梯度阈值,以防止梯度过度缩小。
- 使用 LSTM 或 GRU:通过引入门控机制,LSTM 和 GRU 能够有效缓解梯度消失问题,使模型更稳定。
- 权重初始化:使用如 Xavier 初始化、He 初始化等可以让初始权重更适合反向传播。
2、梯度爆炸:
- 梯度裁剪:设定一个最大梯度阈值,对超过该阈值的梯度进行截断,限制梯度更新的幅度。
- 权重正则化:通过权重惩罚(如 L2 正则化)限制权重值过大,从而防止梯度爆炸。
- 批归一化(Batch Normalization):在每层激活后对输入数据进行归一化,控制数值范围,避免梯度爆炸。
别忘了给这篇文章点个赞哦,非常感谢。我也正处于学习的过程,如果有问题,欢迎在评论区留言讨论,一起学习!
相关文章:

时间序列预测(七)——梯度消失(Vanishing Gradient)与梯度爆炸(Exploding Gradient)
目录 一、定义 二、产生原因 三、解决方法: 梯度消失与梯度爆炸是深度学习中常见的训练问题,它们主要发生在神经网络的反向传播过程中,使得模型难以有效学习。 一、定义 1、梯度消失(Vanishing Gradient)…...

ARM assembly 12: GCD(最大公约数)计算
首先,我们看看GCD(Greatest Common Divisor)的CPP实现 int gcd(int a, int b) {if(b 0) return a;return gcd(b, a%b); }基于下面的gcd.s文件,我们尝试实现gcd函数 //gcd.s .global main .extern fopen, fprintf, fclose, printf, atoi.section .dat…...

「实战应用」如何用图表控件LightningChart可视化天气数据?(一)
LightningChart.NET完全由GPU加速,并且性能经过优化,可用于实时显示海量数据-超过10亿个数据点。 LightningChart包括广泛的2D,高级3D,Polar,Smith,3D饼/甜甜圈,地理地图和GIS图表以及适用于科学…...

基于深度学习的细粒度图像分析综述【翻译】
🥇 版权: 本文由【墨理学AI】原创首发、各位读者大大、敬请查阅、感谢三连 🎉 声明: 作为全网 AI 领域 干货最多的博主之一,❤️ 不负光阴不负卿 ❤️ 文章目录 基础信息0 摘要1 INTRODUCTION2 识别与检索 RECOGNITION VS. RETRIEVAL3 问题和…...

yolo笔记
目录 Anaconda安装Pytorchyolov5下载部署labelimg安装 Anaconda安装 官网链接 https://www.anaconda.com/ 官网链接链接: 官网链接https://www.anaconda.com/ 直接下最新版 (网站会自动检测系统,我是在Windows环境截图的) bash Anaconda3-XXXX-Linux-x86_64.sh一…...

Android平台RTSP|RTMP播放器PK:VLC for Android还是SmartPlayer?
好多开发者,希望在Android端低延迟的播放RTMP或RTSP流,本文就目前市面上主流2个直播播放框架,做个简单的对比。 VLC for Android VLC for Android 是一款功能强大的多媒体播放器,具有以下特点和功能: 广泛的格式支持…...

IDEA下面的Services不见了(解决方案)
大家使用IDEA有时候新打开个项目这个东西不会自动出现如何解决 配置方法: 右上角打开进入Edit Configurations 进入后我们看到里面是没有SpringBoot相关内容的 点击加号选择SpringBoot 然后Apply Ok即可,现在IDEA下面就会出现Service了,打…...

【pyspark学习从入门到精通7】DataFrames_2
目录 创建 DataFrames 生成我们自己的 JSON 数据 创建 DataFrame 创建临时表 简单的 DataFrame 查询 DataFrame API 查询 SQL 查询 创建 DataFrames 通常,您会通过使用 SparkSession(或在 PySpark shell 中调用 spark)导入数据来创建 …...

Server-Sent Event(SSE) GPT场景实现
关于SSE的基本概念可以看一下阮一峰老师的这篇文章:Server-Sent Events教程。 现在比较常见的场景是gpt回答的时候类似下图这种打字机的情况,因为AI一般响应时间会比较长,使用这种方式能让人别等那么久,是一个相对比较良好的用户…...
美国Honeywell霍尼韦尔气体分析侦测器传感器MIDAS-K-HCL说明书
上海德奥达 ---Honeywell霍尼韦尔气体分析侦测器传感器MIDAS-K-HCL是一款用于检测氯化氢气体的高性能传感器。以下是该传感器的技术参数和描述:技术参数:-测量范围:0-50ppm-灵敏度:0.5ppm-响应时间:≤30秒-电源&…...
L1练习-鸢尾花数据集处理(分类/聚类)
背景 前文(《AI 自学 Lesson1 - Sklearn(开源Python机器学习包)》)以鸢尾花数据集的处理为例,本文将完善其代码,在使用 sklearn 的部分工具包基础上,增加部分数据预处理、数据分析和数据可视化…...

javaweb以html方式集成富文本编辑器TinyMce
前言: 单一的批量图片上传按钮,禁用tinymce编辑器,但是还可以操作图片编辑; 多元化格式的富文本编辑要求; 采用tinymce实现。 附: tinymce中文手册网站: http://tinymce.ax-z.cn/download-all.…...

大学生福音!用GPT-4o几分钟内轻松读懂一篇论文!
文章目录 一、读论文智能体:PDFAI操作指导阅读论文上传论文并分析进一步研究导出可用代码 二、感受 一、读论文智能体:PDFAI 操作指导 ChatGPT 4o国内直接访问地址:https://share.xuzhugpt.cloud/ 上plus的车 输入购买的授权码即可。 默认…...
微信小程序昵称获取
<view class"shouquan_list"> <label>昵称</label> <input type"nickname" value"{{nichengshoudong}}" bindinput"bindKeyInputnicheng" placeholder"请输入昵称" placeholder-style"color:r…...

SQL进阶技巧:如何找出开会时间有重叠的会议室?| 时间区间重叠问题
目录 0 场景描述 1 数据准备 2 问题分析 方法1:利用 lateral view posexplode()函数将表展开成时间明细表 方法2:利用数学区间讨论思想求解 3 小结 如果觉得本文对你有帮助,想进一步学习SQL语言这门艺术的,那么不妨也可以选…...
Educational Codeforces Round 170 (Rated for Div. 2) D 题解
to sum of:前三题都是究极水题,补补D题吧,dp太钛肽弱了.. Problem - D - Codeforces--Attribute Checks 思路:首先得坚定地确定m^2,然后剩下的复杂度思考怎么优化.. key:每一个0只考虑影响到下一个0之间的数字!! 定义dp[i][j]为,在有i个能力点时.点了…...

NeRS: Neural Reflectance Surfaces for Sparse-view 3D Reconstruction in the Wild
阅读记录: 1. 2.优点1:我们的方法仅依赖于近似的相机位姿估计和粗略的类别级形状模板。 3.我们的关键见解是,我们可以强制执行基于表面的 3D 表示,而不是允许广泛用于体积表示的无约束密度。重要的是,这允许依赖于视…...
【Linux】su 命令的运行原理以及su切换用户默认继承环境配置
一、su 命令的运行原理 原理解释: su(switch user)命令用于在Linux和Unix系统中切换用户身份。 当你执行 su 命令时,系统会创建一个新的进程,通常是一个新的 shell 实例。这个新进程会以目标用户的身份运行&#…...

libtorch环境配置
环境配置 建议在linux上配置对应环境 可以在autoDL上租一个服务器来搭建,带有pytorch的环境 https://www.autodl.com/home 我自己的win电脑上安装了pytorch,但是配置时会报错,于是到ubuntu上配置 电脑上装有pytorch的就不需要再下载libtorc…...

【C语言】define宏定义与const修饰限定
两者都是将字符替换为相应的数值。 区别在于: #define宏定义纸进行字符串替换,无类型检查 const修饰符限定变量为只读变量 #include <stdio.h> #define PI 3.14159 //符号常量 /* 功能:宏定义与const修饰符限定 时间:20…...

RocketMQ延迟消息机制
两种延迟消息 RocketMQ中提供了两种延迟消息机制 指定固定的延迟级别 通过在Message中设定一个MessageDelayLevel参数,对应18个预设的延迟级别指定时间点的延迟级别 通过在Message中设定一个DeliverTimeMS指定一个Long类型表示的具体时间点。到了时间点后…...
【解密LSTM、GRU如何解决传统RNN梯度消失问题】
解密LSTM与GRU:如何让RNN变得更聪明? 在深度学习的世界里,循环神经网络(RNN)以其卓越的序列数据处理能力广泛应用于自然语言处理、时间序列预测等领域。然而,传统RNN存在的一个严重问题——梯度消失&#…...

学校招生小程序源码介绍
基于ThinkPHPFastAdminUniApp开发的学校招生小程序源码,专为学校招生场景量身打造,功能实用且操作便捷。 从技术架构来看,ThinkPHP提供稳定可靠的后台服务,FastAdmin加速开发流程,UniApp则保障小程序在多端有良好的兼…...
Linux云原生安全:零信任架构与机密计算
Linux云原生安全:零信任架构与机密计算 构建坚不可摧的云原生防御体系 引言:云原生安全的范式革命 随着云原生技术的普及,安全边界正在从传统的网络边界向工作负载内部转移。Gartner预测,到2025年,零信任架构将成为超…...

ElasticSearch搜索引擎之倒排索引及其底层算法
文章目录 一、搜索引擎1、什么是搜索引擎?2、搜索引擎的分类3、常用的搜索引擎4、搜索引擎的特点二、倒排索引1、简介2、为什么倒排索引不用B+树1.创建时间长,文件大。2.其次,树深,IO次数可怕。3.索引可能会失效。4.精准度差。三. 倒排索引四、算法1、Term Index的算法2、 …...
智能AI电话机器人系统的识别能力现状与发展水平
一、引言 随着人工智能技术的飞速发展,AI电话机器人系统已经从简单的自动应答工具演变为具备复杂交互能力的智能助手。这类系统结合了语音识别、自然语言处理、情感计算和机器学习等多项前沿技术,在客户服务、营销推广、信息查询等领域发挥着越来越重要…...

打手机检测算法AI智能分析网关V4守护公共/工业/医疗等多场景安全应用
一、方案背景 在现代生产与生活场景中,如工厂高危作业区、医院手术室、公共场景等,人员违规打手机的行为潜藏着巨大风险。传统依靠人工巡查的监管方式,存在效率低、覆盖面不足、判断主观性强等问题,难以满足对人员打手机行为精…...
关于uniapp展示PDF的解决方案
在 UniApp 的 H5 环境中使用 pdf-vue3 组件可以实现完整的 PDF 预览功能。以下是详细实现步骤和注意事项: 一、安装依赖 安装 pdf-vue3 和 PDF.js 核心库: npm install pdf-vue3 pdfjs-dist二、基本使用示例 <template><view class"con…...

给网站添加live2d看板娘
给网站添加live2d看板娘 参考文献: stevenjoezhang/live2d-widget: 把萌萌哒的看板娘抱回家 (ノ≧∇≦)ノ | Live2D widget for web platformEikanya/Live2d-model: Live2d model collectionzenghongtu/live2d-model-assets 前言 网站环境如下,文章也主…...
Python 高效图像帧提取与视频编码:实战指南
Python 高效图像帧提取与视频编码:实战指南 在音视频处理领域,图像帧提取与视频编码是基础但极具挑战性的任务。Python 结合强大的第三方库(如 OpenCV、FFmpeg、PyAV),可以高效处理视频流,实现快速帧提取、压缩编码等关键功能。本文将深入介绍如何优化这些流程,提高处理…...