Server-Sent Event(SSE) GPT场景实现
关于SSE的基本概念可以看一下阮一峰老师的这篇文章:Server-Sent Events教程。
现在比较常见的场景是gpt回答的时候类似下图这种打字机的情况,因为AI一般响应时间会比较长,使用这种方式能让人别等那么久,是一个相对比较良好的用户体验。

这里简单说一下具体这个场景下的实现思路。
客户端(前端)
SSE 使用 HTTP 协议,客户端需要向服务端发起一次请求,需要定义一个fetchEventSource方法,大概这样:
const fetchEventSource = (url, options) => {fetch(url, options).then(resp => {if (resp.status === 200) {options.onopen && options.onopen()return resp.body}}).then(rb => {const reader = rb.getReader()const push = () => {// done 为数据是否接收完成 boolean 值// value 为接收到的数据, Uint8Array 格式return reader.read().then(({done, value}) => {if (done) {options.onclose && options.onclose()return}options.onmessage && options.onmessage(new TextDecoder().decode(value))return push()});}// 开始读取流信息return push()}).catch((e) => {options.error && options.error(e)})}
定义url和options参数,url传请求的地址,options可以定义更多内容,大概像这样调用fetchEventSource方法:
fetchEventSource('http://localhost:8000/gpt/summary', {method: 'POST',body: JSON.stringify(data),headers: {"Content-Type": "application/json","Authorization": "此处可以带接口鉴权token"},onopen: () => {console.log('连接sse成功')},onclose: () => {console.log('sse连接关闭')},onmessage: (delta) => {let prefix = 'data: 'if (!delta.startsWith(prefix)) {return;}let delta_array = delta.split(prefix);delta_array.forEach(function(element) {element = element.replace(/\n$/, '')if (element === '[DONE]\n') {return;}if (element != '') {// 可能有多个回答let choices = JSON.parse(element).choices;let content = choices[0].delta.content;console.log(content);$('#mean').append(content);}});}})
可以看到option中比实际http请求多了几个函数:onopen onclose onmessage,onopen代表和服务端建立连接成功,onclose则是关闭服务端连接的时候会被调用,onmessage则是处理接口返回的数据,一般是需要处理多份数据,这里详细讲一下onmessage的处理方式。
onmessage可以看到参数是delta,假如说GPT场景下返回了“你好,我是GPT的文字”,可能第一个delta里就返回包含”你好“,第二个delta里返回“,”,第三个delta返回“我是”等等以此类推直到数据返回完毕。数据返回的格式因业务不同也会不同,但基本要做的事情就是处理并解析里面的数据,然后把这些文字拼接到页面上做显示,实现效果。
服务端(后端)
服务端的任务通常是调用gpt的接口,然后流式读取,读到什么马上返回给前端。
这里给一个python的demo:
from sse_starlette.sse import ServerSentEvent, EventSourceResponsedef create_chat_completion(messages):# 发起请求response = openai.ChatCompletion.create(engine="gpt-35-turbo",messages=messages,stream=True, # 该参数需要设置为truemax_tokens=1000)# 循环处理stream结果for item in response:# yield ServerSentEvent(json.dumps(item, ensure_ascii=False), event='delta')result = json.dumps(item)print(result)yield ServerSentEvent(json.dumps(item))@router.post("/summary")
async def summary(contentNeedSummary: posts.ContentNeedSummary, user = Depends(get_token_header)): messages = [{"role": "system", "content": "可以预置一些系统的设置"},{"role": "user", "content": contentNeedSummary.content}]return EventSourceResponse(create_chat_completion(messages))
可以看到上面的方法,前端调用/summary接口后,进入summary函数,做一些这个方法特有的设置之后,return了EventSourceResponse(create_chat_completion(messages))。create_chat_completion再实现通用的调用gpt的方法,每得到一个响应,马上用ServerSentEvent包裹返回给前端。
也就是说,整个过程,是前端发起SSE请求服务端,服务端(可以做一些别的处理,比如鉴权和预置系统数据)再发起SSE请求GPT接口;在返回结果的过程中,GPT接口流式输出给服务端,服务端(可以做一些别的处理,比如处理好返回结果的格式,计算token成本)马上返回给前端,比如GPT接口流式输出了“你好”,服务端马上返回了“你好”给前端显示在网页上,再返回“,我是GPT”,服务端接着返回给前端显示在网页上。
这样的处理方式可以让结果尽快显示出来,也可以借由服务端的处理,保证安全和计算成本,以及处理好数据格式。
相关文章:
Server-Sent Event(SSE) GPT场景实现
关于SSE的基本概念可以看一下阮一峰老师的这篇文章:Server-Sent Events教程。 现在比较常见的场景是gpt回答的时候类似下图这种打字机的情况,因为AI一般响应时间会比较长,使用这种方式能让人别等那么久,是一个相对比较良好的用户…...
美国Honeywell霍尼韦尔气体分析侦测器传感器MIDAS-K-HCL说明书
上海德奥达 ---Honeywell霍尼韦尔气体分析侦测器传感器MIDAS-K-HCL是一款用于检测氯化氢气体的高性能传感器。以下是该传感器的技术参数和描述:技术参数:-测量范围:0-50ppm-灵敏度:0.5ppm-响应时间:≤30秒-电源&…...
L1练习-鸢尾花数据集处理(分类/聚类)
背景 前文(《AI 自学 Lesson1 - Sklearn(开源Python机器学习包)》)以鸢尾花数据集的处理为例,本文将完善其代码,在使用 sklearn 的部分工具包基础上,增加部分数据预处理、数据分析和数据可视化…...
javaweb以html方式集成富文本编辑器TinyMce
前言: 单一的批量图片上传按钮,禁用tinymce编辑器,但是还可以操作图片编辑; 多元化格式的富文本编辑要求; 采用tinymce实现。 附: tinymce中文手册网站: http://tinymce.ax-z.cn/download-all.…...
大学生福音!用GPT-4o几分钟内轻松读懂一篇论文!
文章目录 一、读论文智能体:PDFAI操作指导阅读论文上传论文并分析进一步研究导出可用代码 二、感受 一、读论文智能体:PDFAI 操作指导 ChatGPT 4o国内直接访问地址:https://share.xuzhugpt.cloud/ 上plus的车 输入购买的授权码即可。 默认…...
微信小程序昵称获取
<view class"shouquan_list"> <label>昵称</label> <input type"nickname" value"{{nichengshoudong}}" bindinput"bindKeyInputnicheng" placeholder"请输入昵称" placeholder-style"color:r…...
SQL进阶技巧:如何找出开会时间有重叠的会议室?| 时间区间重叠问题
目录 0 场景描述 1 数据准备 2 问题分析 方法1:利用 lateral view posexplode()函数将表展开成时间明细表 方法2:利用数学区间讨论思想求解 3 小结 如果觉得本文对你有帮助,想进一步学习SQL语言这门艺术的,那么不妨也可以选…...
Educational Codeforces Round 170 (Rated for Div. 2) D 题解
to sum of:前三题都是究极水题,补补D题吧,dp太钛肽弱了.. Problem - D - Codeforces--Attribute Checks 思路:首先得坚定地确定m^2,然后剩下的复杂度思考怎么优化.. key:每一个0只考虑影响到下一个0之间的数字!! 定义dp[i][j]为,在有i个能力点时.点了…...
NeRS: Neural Reflectance Surfaces for Sparse-view 3D Reconstruction in the Wild
阅读记录: 1. 2.优点1:我们的方法仅依赖于近似的相机位姿估计和粗略的类别级形状模板。 3.我们的关键见解是,我们可以强制执行基于表面的 3D 表示,而不是允许广泛用于体积表示的无约束密度。重要的是,这允许依赖于视…...
【Linux】su 命令的运行原理以及su切换用户默认继承环境配置
一、su 命令的运行原理 原理解释: su(switch user)命令用于在Linux和Unix系统中切换用户身份。 当你执行 su 命令时,系统会创建一个新的进程,通常是一个新的 shell 实例。这个新进程会以目标用户的身份运行&#…...
libtorch环境配置
环境配置 建议在linux上配置对应环境 可以在autoDL上租一个服务器来搭建,带有pytorch的环境 https://www.autodl.com/home 我自己的win电脑上安装了pytorch,但是配置时会报错,于是到ubuntu上配置 电脑上装有pytorch的就不需要再下载libtorc…...
【C语言】define宏定义与const修饰限定
两者都是将字符替换为相应的数值。 区别在于: #define宏定义纸进行字符串替换,无类型检查 const修饰符限定变量为只读变量 #include <stdio.h> #define PI 3.14159 //符号常量 /* 功能:宏定义与const修饰符限定 时间:20…...
基于深度学习的基于视觉的机器人导航
基于深度学习的视觉机器人导航是一种通过深度学习算法结合视觉感知系统(如摄像头、LiDAR等)实现机器人在复杂环境中的自主导航的技术。这种方法使机器人能够像人类一样使用视觉信息感知环境、规划路径,并避开障碍物。与传统的导航方法相比&am…...
苍穹外卖学习笔记(二十三)
拒单 OrderController /*** 拒单*/PutMapping("/rejection")ApiOperation("拒单")public Result rejection(RequestBody OrdersRejectionDTO ordersRejectionDTO) throws Exception {orderService.rejection(ordersRejectionDTO);return Result.success(…...
vLLM 推理引擎性能分析基准测试
文章目录 分析步骤案例案例描述测试数据集 原始数据〇轮测试(enable-64)一轮测试(enable-128)二轮测试(enable-256)三轮测试(enable-512)四轮测试(enable-2048࿰…...
图像增强论文精读笔记-Kindling the Darkness: A Practical Low-light Image Enhancer(KinD)
1. 论文基本信息 论文标题:Kindling the Darkness: A Practical Low-light Image Enhancer 作者:Yonghua Zhang等 发表时间和期刊:2019;ACM MM 论文链接:https://arxiv.org/abs/1905.04161 2. 研究背景和动机 现有…...
HALCON数据结构之字符串
1.1 String字符串的基本操作 *将数字转换为字符串或修改字符串 *tuple_string (T, Format, String) //HALCON语句 *String: T $ Format //赋值操作*Format string 由以下四个部分组成: *<flags><field width>.<precision><conversion 字符&g…...
string模拟优化和vector使用
1.简单介绍编码 utf_8变长编码,常用英文字母使用1个字节,对于其它语言可能2到14,大部分编码是utf_8,char_16是编码为utf_16, char_32是编码为utf_32, wchar_t是宽字符的, utf_16是大小为俩个字节&a…...
Go-知识依赖GOPATH
Go-知识依赖GOPATH 1. 介绍2. GOROOT 是什么3. GOPATH 是什么4. 依赖查找5. GOPATH 的缺点1. 介绍 早期Go语言单纯地使用GOPATH管理依赖,但是GOPATH不方便管理依赖的多个版本,后来增加了vendor,允许把项目依赖 连同项目源码一同管理。Go 1.11 引入了全新的依赖管理工具 Go …...
PyTorch 中 reshape 函数用法示例
PyTorch 中 reshape 函数用法示例 在 PyTorch 中,reshape 函数用于改变张量的形状,而不改变其中的数据。下面是一些关于 reshape 函数的常见用法示例。 基本语法 torch.reshape(input, shape) # input: 要重塑的张量。 # shape: 目标形状࿰…...
CTF show Web 红包题第六弹
提示 1.不是SQL注入 2.需要找关键源码 思路 进入页面发现是一个登录框,很难让人不联想到SQL注入,但提示都说了不是SQL注入,所以就不往这方面想了 先查看一下网页源码,发现一段JavaScript代码,有一个关键类ctfs…...
基于Flask实现的医疗保险欺诈识别监测模型
基于Flask实现的医疗保险欺诈识别监测模型 项目截图 项目简介 社会医疗保险是国家通过立法形式强制实施,由雇主和个人按一定比例缴纳保险费,建立社会医疗保险基金,支付雇员医疗费用的一种医疗保险制度, 它是促进社会文明和进步的…...
多模态商品数据接口:融合图像、语音与文字的下一代商品详情体验
一、多模态商品数据接口的技术架构 (一)多模态数据融合引擎 跨模态语义对齐 通过Transformer架构实现图像、语音、文字的语义关联。例如,当用户上传一张“蓝色连衣裙”的图片时,接口可自动提取图像中的颜色(RGB值&…...
Java面试专项一-准备篇
一、企业简历筛选规则 一般企业的简历筛选流程:首先由HR先筛选一部分简历后,在将简历给到对应的项目负责人后再进行下一步的操作。 HR如何筛选简历 例如:Boss直聘(招聘方平台) 直接按照条件进行筛选 例如:…...
论文笔记——相干体技术在裂缝预测中的应用研究
目录 相关地震知识补充地震数据的认识地震几何属性 相干体算法定义基本原理第一代相干体技术:基于互相关的相干体技术(Correlation)第二代相干体技术:基于相似的相干体技术(Semblance)基于多道相似的相干体…...
SQL慢可能是触发了ring buffer
简介 最近在进行 postgresql 性能排查的时候,发现 PG 在某一个时间并行执行的 SQL 变得特别慢。最后通过监控监观察到并行发起得时间 buffers_alloc 就急速上升,且低水位伴随在整个慢 SQL,一直是 buferIO 的等待事件,此时也没有其他会话的争抢。SQL 虽然不是高效 SQL ,但…...
C/C++ 中附加包含目录、附加库目录与附加依赖项详解
在 C/C 编程的编译和链接过程中,附加包含目录、附加库目录和附加依赖项是三个至关重要的设置,它们相互配合,确保程序能够正确引用外部资源并顺利构建。虽然在学习过程中,这些概念容易让人混淆,但深入理解它们的作用和联…...
CppCon 2015 学习:Time Programming Fundamentals
Civil Time 公历时间 特点: 共 6 个字段: Year(年)Month(月)Day(日)Hour(小时)Minute(分钟)Second(秒) 表示…...
算法250609 高精度
加法 #include<stdio.h> #include<iostream> #include<string.h> #include<math.h> #include<algorithm> using namespace std; char input1[205]; char input2[205]; int main(){while(scanf("%s%s",input1,input2)!EOF){int a[205]…...
数据挖掘是什么?数据挖掘技术有哪些?
目录 一、数据挖掘是什么 二、常见的数据挖掘技术 1. 关联规则挖掘 2. 分类算法 3. 聚类分析 4. 回归分析 三、数据挖掘的应用领域 1. 商业领域 2. 医疗领域 3. 金融领域 4. 其他领域 四、数据挖掘面临的挑战和未来趋势 1. 面临的挑战 2. 未来趋势 五、总结 数据…...
