服务器、jvm、数据库的CPU飙高怎么处理
服务器 CPU 飙高处理
排查步骤:
- 监控工具:使用操作系统自带的监控工具,比如 
top、htop、sar、vmstat等,查看哪些进程占用了大量的 CPU 资源。 - 进程排查:通过 
top等工具找到消耗 CPU 最高的进程,确定是哪个应用程序或服务导致的问题。- 使用 
ps -ef | grep <pid>查看进程详细信息。 
 - 使用 
 - 分析日志:检查服务器应用的日志文件,寻找任何异常,如大量的请求、死循环、资源消耗过高等。
 - 网络请求排查:使用 
netstat或者ss命令检查是否有异常的网络连接,如大量的外部请求导致 CPU 消耗。 
处理措施:
- 重启服务:如果发现某个服务异常占用资源,可以通过重启进程来暂时缓解问题。
 - 优化进程:根据问题根源,对应用程序进行优化,减少 CPU 的密集型操作(比如复杂计算、死循环等)。
 - 限制资源使用:在服务器上使用 
cgroups或者nice来限制进程的 CPU 使用率。 - 水平扩展:如果服务器本身的资源不足,考虑扩容,增加更多的服务器分担负载。
 
2. JVM CPU 飙高处理
排查步骤:
- 监控 JVM:通过 
jvisualvm、jconsole或者Java Mission Control (JMC)等工具监控 JVM,查看垃圾回收 (GC)、线程状态和 CPU 使用情况。 - 线程排查:使用 
jstack导出线程栈,检查是否有某些线程处于忙碌状态,或者死锁问题。jstack <pid> > threaddump.txt可以生成线程快照,分析哪些线程占用大量 CPU。
 - GC 问题:如果 GC 频繁导致 CPU 飙高,可以通过 GC 日志分析垃圾回收的次数和时间,检查是否有内存泄漏或者内存使用不合理。 
jstat -gc <pid>用于实时监控 JVM GC 状态。
 
处理措施:
- 优化代码:检查线程死循环、锁竞争、并发问题等代码问题,优化 CPU 密集型任务。
 - 调整 GC 策略:根据系统负载和内存使用情况,调整 JVM 的垃圾回收策略和参数,如 
-Xms、-Xmx、-XX:+UseG1GC等。 - 线程池优化:如果是线程池问题,可以调整线程池的大小,避免过多的线程占用 CPU。
 - 升级 JVM:有时升级 JVM 版本可以解决某些性能瓶颈或垃圾回收问题。
 
3. 数据库 CPU 飙高处理
排查步骤:
- SQL 查询分析:使用数据库的查询分析工具(如 
EXPLAIN、SHOW PROCESSLIST)检查当前执行的 SQL 语句,查找是否有复杂查询或慢查询导致 CPU 飙高。- 对于 MySQL,可以使用 
SHOW PROCESSLIST查看正在运行的 SQL 语句。 - 对于 Oracle 可以用 
V$SESSION和V$SQLAREA等视图检查当前活动的 SQL 。 
 - 对于 MySQL,可以使用 
 - 锁竞争:检查是否有大量锁竞争,导致事务等待,进而增加 CPU 使用。 
- MySQL 中使用 
SHOW ENGINE INNODB STATUS检查锁竞争。 
 - MySQL 中使用 
 - 索引问题:检查查询是否缺少索引,导致全表扫描,消耗大量的 CPU。
 
处理措施:
- 优化 SQL 语句:优化慢查询,添加缺失的索引,或者重构不合理的查询。
 - 增加缓存:通过引入缓存(如 Redis、Memcached)减少数据库查询压力。
 - 调整数据库配置:调整数据库的线程池、连接池大小,或者增加数据库的并发处理能力。
 - 分库分表:如果是由于数据库过大导致查询效率低,可以考虑进行分库分表处理。
 
相关文章:
服务器、jvm、数据库的CPU飙高怎么处理
服务器 CPU 飙高处理 排查步骤: 监控工具:使用操作系统自带的监控工具,比如 top、htop、sar、vmstat 等,查看哪些进程占用了大量的 CPU 资源。进程排查:通过 top 等工具找到消耗 CPU 最高的进程,确定是哪…...
自适应过滤法—初级
#课本P144例题 """ Python 简单的自适应过滤移动平均预测方法 """ import numpy as np import matplotlib.pyplot as plt#用于迭代的函数 def self_adaptive( seq, N, k, maxsteps ):## 初始化序列seq_ada = np.zeros( len(seq) ) # 设置预测…...
UML图有用吗?真正厉害的软件开发,有用的吗?什么角色用?
UML(Unified Modeling Language,统一建模语言)图在软件开发中是有用的,但其使用取决于项目的规模、复杂度以及开发团队的实践习惯。真正厉害的开发者并非一定要依赖UML图,但在某些情况下,UML图确实能够提升…...
基于Java+Springboot+Vue开发的酒店客房预订管理系统
项目简介 该项目是基于JavaSpringbootVue开发的酒店客房预订管理系统(前后端分离),这是一项为大学生课程设计作业而开发的项目。该系统旨在帮助大学生学习并掌握Java编程技能,同时锻炼他们的项目设计与开发能力。通过学习基于Java…...
OpenCV高级图形用户界面(5)获取指定滑动条(trackbar)的当前位置函数getTrackbarPos()的使用
操作系统:ubuntu22.04 OpenCV版本:OpenCV4.9 IDE:Visual Studio Code 编程语言:C11 算法描述 返回滑动条的位置。 该函数返回指定滑动条的当前位置。 cv::getTrackbarPos() 函数用于获取指定滑动条(trackbar)的当前…...
拓扑排序在实际开发中的应用
1. 拓扑排序说明 简单解释:针对于有向无环图(DAG),给出一个可行的节点排序,使节点之间的依赖关系不冲突。 复杂解释:自行搜索相关资料。 本次应用中的解释:给出一个可行的计算顺序࿰…...
【CTF-SHOW】Web入门 Web27-身份证日期爆破 【关于bp intruder使用--详记录】
1.点进去 是一个登录系统,有录取名单和学籍信息 发现通过姓名和身份证号可以进行录取查询,推测录取查询可能得到学生对应学号和密码,但是身份证号中的出生日期部分未知,所以可以进行爆破 2.打开bp抓包 这里注意抓的是学院录取查…...
Windows 添加右键以管理员身份运行 PowerShell
在 Windows 系统中添加一个右键菜单选项,以便可以使用管理员权限打开 PowerShell,可以通过编辑注册表来实现。 打开注册表编辑器: 按 Win R 打开运行对话框。输入 regedit 并按回车,这将打开注册表编辑器。 导航到文件夹背景键&…...
数学建模算法与应用 第15章 预测方法
目录 15.1 微分方程模型 Matlab代码示例:求解简单的微分方程 15.2 灰色预测模型(GM) Matlab代码示例:灰色预测模型 15.3 自回归模型(AR) Matlab代码示例:AR模型的预测 15.4 指数平滑法 M…...
HC32F460KETA PETB JATA 工业 自动化 电机
HC32F460 系列是基于 ARM Cortex-M4 32-bit RISC CPU,最高工作频率 200MHz 的高性能 MCU。Cortex-M4 内核集成了浮点运算单元(FPU)和 DSP,实现单精度浮点算术运算,支持 所有 ARM 单精度数据处理指令和数据类型…...
linux系统,不定时kernel bug :soft lockup的问题
这个问题困扰好久,机器经常不定时卡死,只能重启 后来检查是因为没有安装nvidia显卡驱动,或者更新到最新驱动 下载地址:驱动详情 禁止nouveau就可以了...
【C语言教程】【常用类库】(十四)可移植库 - <unistd.h> 和 <sys/types.h>
14. 可移植库 - <unistd.h> 和 <sys/types.h> UNIX和类UNIX系统上提供的一组头文件,其中<unistd.h>定义了POSIX操作系统API的访问点,而<sys/types.h>定义了许多基础数据类型。这些库在多种环境中增强了C程序的可移植性。 14.1…...
Java项目实战II基于Spring Boot的周边游平台设计与实现(源码+数据库+文档)
目录 一、前言 二、技术介绍 三、系统实现 四、文档参考 五、核心代码 六、源码获取 全栈码农以及毕业设计实战开发,CSDN平台Java领域新星创作者,专注于大学生项目实战开发、讲解和毕业答疑辅导。获取源码联系方式请查看文末 一、前言 随着人们生…...
远程控制软件哪个好用:4款主流的远程控制软件大点评,谁最给力?
战国时期,有百家争鸣,九流十家,争芳斗艳; 时至今日,科学技术突飞猛进、一日千里,各大远程控制软件更是佳丽三千、琳琅满目、各有千秋! 这时,新的问题来了:远程控制软件哪…...
基于springboot实习管理系统
作者:计算机学长阿伟 开发技术:SpringBoot、SSM、Vue、MySQL、ElementUI等,“文末源码”。 系统展示 【2024最新】基于JavaSpringBootVueMySQL的,前后端分离。 开发语言:Java数据库:MySQL技术:…...
(38)MATLAB分析带噪信号的频谱
文章目录 前言一、MATLAB仿真代码二、仿真结果画图总结 前言 本文给出带噪信号的时域和频域分析,指出频域分析在处理带噪信号时的优势。 首先使用MATLAB生成一段信号,并在信号上叠加高斯白噪声得到带噪信号,然后对带噪信号对其进行FFT变换&…...
多级缓存-案例导入说明
为了演示多级缓存,我们先导入一个商品管理的案例,其中包含商品的CRUD功能。我们将来会给查询商品添加多级缓存。 1.安装MySQL 后期做数据同步需要用到MySQL的主从功能,所以需要大家在虚拟机中,利用Docker来运行一个MySQL容器。 1.1.准备目录 为了方便后期配置MySQL,我们…...
基于Python的自然语言处理系列(31):SpaCy + Training Neural Network
1. 介绍 在自然语言处理的多个任务中,训练神经网络模型是一个至关重要的步骤,它能帮助我们实现更精准的模型预测。对于特定的任务,如命名实体识别(NER)或文本分类,使用自定义的训练数据对模型进行微调是提高模型表现的有效方式。在这篇文章中,我们将深入探讨如何从零开始…...
在 cPanel 中管理区域编辑权限
在 cPanel & WHM 60 版本中,cPanel 界面有四种不同方式编辑你的区域文件。简单 DNS 编辑器(cPanel >> 域名 >> 简单 DNS 编辑器)允许用户设置 A 记录和 CNAME 记录。高级 DNS 编辑器(cPanel >> 域名 >&g…...
web前端网页用户注册页面
源码: <head><meta charset"UTF-8"><meta name"viewport" content"widthdevice-width, initial-scale1.0"><title>用户注册</title> </head> <body><form action"#" metho…...
UE5 学习系列(二)用户操作界面及介绍
这篇博客是 UE5 学习系列博客的第二篇,在第一篇的基础上展开这篇内容。博客参考的 B 站视频资料和第一篇的链接如下: 【Note】:如果你已经完成安装等操作,可以只执行第一篇博客中 2. 新建一个空白游戏项目 章节操作,重…...
挑战杯推荐项目
“人工智能”创意赛 - 智能艺术创作助手:借助大模型技术,开发能根据用户输入的主题、风格等要求,生成绘画、音乐、文学作品等多种形式艺术创作灵感或初稿的应用,帮助艺术家和创意爱好者激发创意、提高创作效率。  - 个性化梦境…...
地震勘探——干扰波识别、井中地震时距曲线特点
目录 干扰波识别反射波地震勘探的干扰波 井中地震时距曲线特点 干扰波识别 有效波:可以用来解决所提出的地质任务的波;干扰波:所有妨碍辨认、追踪有效波的其他波。 地震勘探中,有效波和干扰波是相对的。例如,在反射波…...
TDengine 快速体验(Docker 镜像方式)
简介 TDengine 可以通过安装包、Docker 镜像 及云服务快速体验 TDengine 的功能,本节首先介绍如何通过 Docker 快速体验 TDengine,然后介绍如何在 Docker 环境下体验 TDengine 的写入和查询功能。如果你不熟悉 Docker,请使用 安装包的方式快…...
Leetcode 3576. Transform Array to All Equal Elements
Leetcode 3576. Transform Array to All Equal Elements 1. 解题思路2. 代码实现 题目链接:3576. Transform Array to All Equal Elements 1. 解题思路 这一题思路上就是分别考察一下是否能将其转化为全1或者全-1数组即可。 至于每一种情况是否可以达到…...
K8S认证|CKS题库+答案| 11. AppArmor
目录 11. AppArmor 免费获取并激活 CKA_v1.31_模拟系统 题目 开始操作: 1)、切换集群 2)、切换节点 3)、切换到 apparmor 的目录 4)、执行 apparmor 策略模块 5)、修改 pod 文件 6)、…...
SciencePlots——绘制论文中的图片
文章目录 安装一、风格二、1 资源 安装 # 安装最新版 pip install githttps://github.com/garrettj403/SciencePlots.git# 安装稳定版 pip install SciencePlots一、风格 简单好用的深度学习论文绘图专用工具包–Science Plot 二、 1 资源 论文绘图神器来了:一行…...
(二)TensorRT-LLM | 模型导出(v0.20.0rc3)
0. 概述 上一节 对安装和使用有个基本介绍。根据这个 issue 的描述,后续 TensorRT-LLM 团队可能更专注于更新和维护 pytorch backend。但 tensorrt backend 作为先前一直开发的工作,其中包含了大量可以学习的地方。本文主要看看它导出模型的部分&#x…...
Mac软件卸载指南,简单易懂!
刚和Adobe分手,它却总在Library里给你写"回忆录"?卸载的Final Cut Pro像电子幽灵般阴魂不散?总是会有残留文件,别慌!这份Mac软件卸载指南,将用最硬核的方式教你"数字分手术"࿰…...
【HTML-16】深入理解HTML中的块元素与行内元素
HTML元素根据其显示特性可以分为两大类:块元素(Block-level Elements)和行内元素(Inline Elements)。理解这两者的区别对于构建良好的网页布局至关重要。本文将全面解析这两种元素的特性、区别以及实际应用场景。 1. 块元素(Block-level Elements) 1.1 基本特性 …...
